$I_1=\pi\int^{\pi}_0\sin x\cos^2xdx=-\pi\int^{\pi}_0\cos^2xd\cos x$
$=\frac{-\pi}{3}\cos^3x|^{\pi}_0=\frac{2\pi}{3}$
$I_2=\int^{\pi}_0 x\sin x\cos^2xdx=-\int^{\pi}_0 x\cos^2xd\cos x$
$=-\frac{1}{3}\int^{\pi}_0 xd\cos^3 x=\frac{-1}{3} x\cos^3 x|^{\pi}_0+\frac{1}{3}\int^{\pi}_0 \cos^3 xdx$
$=\frac{\pi}{3}+\frac{1}{12}\cos^4x|^{\pi}_0=\frac{\pi}{3}$
$\Rightarrow I=\frac{\pi}{3}$
Thẻ
Lượt xem