|
Đặt $t = {5^x},t > 0$ ta có: $\,\,\,\,\,\,\,\,\,\,\,\,\,\,{t^2} - \left( {2m + 5} \right).t + {m^2} + 5 > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\forall t > 0$ Gọi $\,\,\,\,\,\,\,\,\,\,\,\,f(t) = \,\,{t^2} - \left( {2m + 5} \right).t + {m^2} + 5$ Ta có $a = 1 > 0,\,\,\,\Delta = {\left( {2m + 5} \right)^2} - 4\left( {{m^2} + 5} \right) = 25$ $f(t)$có $2$ nghiệm ${t_1}<{t_2}$và $f(t) > 0$ có nghiệm là : $\left[ \begin{array}{l} t < {t_1}\\ t > {t_2} \end{array} \right.$ $\begin{array}{l} Để f(t) > 0,\forall t > 0\,\,\,\, \Leftrightarrow \,\,\,{t_1} < {t_2} \le 0\\ \Leftrightarrow \left\{ \begin{array}{l} {\rm P} \ge 0\\ S < 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} {m^2} + 5 \ge 0\\ 2m + 5 < 0 \end{array} \right.\,\,\,\,\,\,\,\, \Leftrightarrow m < - \frac52 \end{array}$
|
|
Đăng bài 26-04-12 01:42 PM
|
|