|
Điều kiện : $x > 1,\,\,\,$ta có $\left| {1 - x} \right| = x - 1$ $(1) \Leftrightarrow \,\,\,\,\,\,\,\,\,\,\,6{\log _3}\left( {x - 1} \right) + \log _3^2\left( {x - 1} \right) + 5 \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ Đặt $t = {\log _3}\left( {x - 1} \right)$ ta có ${t^2} + 6t + 5 \ge 0$ $\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l} t \le - 5\\ t \ge - 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} {\log _3}\left( {x - 1} \right) \le - 5\\ {\log _3}\left( {x - 1} \right) \ge - 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} 0 \le x - 1 \le \frac{1}{{{3^5}}}\\ x - 1 \ge \frac{1}{3}\,\,\,\,\,\,\,\,\,\, \end{array} \right.\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} 1 < x \le 1 + \frac{1}{{{3^5}}}\\ x \ge \frac{4}{3} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} 1 < x \le \frac{{244}}{{243}}\\ x \ge \frac{4}{3} \end{array} \right. \end{array}$ Vậy nghiệm của bất phương trình: $\left[ \begin{array}{l} 1 < x \le \frac{{244}}{{243}}\\ x \ge \frac{4}{3} \end{array} \right.$
|
|
Đăng bài 26-04-12 11:17 AM
|
|