SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC


Trong chuyên đề này, ta sẽ tìm hiểu về 4 bất đẳng thức cổ điển và ứng dụng của chúng trong giải bất đẳng thức lượng giác. Các bất đẳng thức bao gồm:
1. Bất đẳng thức Cauchy (AM – GM)
2. Bất đẳng thức Bunhiacốpxki
3. Bất đẳng thức Jensen
4. Bất đẳng thức Chebyshev

1. Bất đẳng thức Cauchy (AM – GM):
Với mọi số thực không âm ${a_1},{a_2},....,{a_n}$ ta luôn có:
              $\frac{{{a_1} + {a_2} + ... + {a_n}}}{n} \geqslant \sqrt[n]{{{a_1}{a_2}...{a_n}}}$

Ví dụ 1:
Cho A,B,C là 3 đỉnh của 1 tam giác nhọn. CMR:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Lời giải:
Vì $\tan \left( {A + B} \right) =  - \tan C \Leftrightarrow \frac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} =  - \tan C$
$ \Rightarrow \tan A + \tan B + \tan C = \tan A.\tan B.\tan C$
Tam giác ABC nhọn nên tanA, tanB, tanC dương.
Theo Cauchy ta có:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt[3]{{\tan A.\tan B.\tan C}} = 3\sqrt[3]{{\tan A + \tan B + \tan C}}$
            $ \Rightarrow {\left( {\tan A + \tan B + \tan C} \right)^2} \geqslant 27\left( {\tan A + \tan B + \tan C} \right)$
    $ \Rightarrow \tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Đẳng thức xảy ra$ \Leftrightarrow A = B = C \Leftrightarrow \Delta ABC$đều.

Ví dụ 2 :
Cho $\Delta ABC$ nhọn. CMR: $\cot A + \cot B + \cot C \geqslant \sqrt 3 $
Lời giải:
Ta luôn có:
         $\begin{array}
  \cot \left( {A + B} \right) =  - \cot C  \\
   \Leftrightarrow \frac{{\cot A.\cot B - 1}}{{\cot A + \cot B}} =  - \cot C  \\
   \Leftrightarrow \cot A.\cot B + \cot B.\cot C + \cot C.\cot A = 1  \\
\end{array} $
Khi đó:
         ${\left( {\cot A - \cot B} \right)^2} + {\left( {\cot B - \cot C} \right)^2} + {\left( {\cot C - \cot A} \right)^2} \geqslant 0$
    $ \Leftrightarrow {\left( {\cot A + \cot B + \cot C} \right)^2} \geqslant 3\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right) = 3$
    $ \Rightarrow \cot A + \cot B + \cot C \geqslant \sqrt 3 $
Dấu bằng xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ nhọn ta  có:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} \\
                           \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$
Lời giải:
Ta có:  $\frac{{\cos A}}{{2\cos \frac{A}{2}}} = \sin \frac{A}{2}\cot \frac{A}{2}$
$ \Rightarrow \frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} = \left( {\sin \frac{A}{2}\sin \frac{B}{2}} \right)\left( {\frac{3}{4}\cot A\cot B} \right)$
Theo Cauchy:
$\frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} \leqslant {\left( {\frac{{\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B}}{2}} \right)^2}$
$ \Rightarrow \sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B} \right)$
Tương tự ta có:
$\sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{B}{2}\sin \frac{C}{2} + \frac{3}{4}\cot B\cot C} \right)$
$S = pr \Rightarrow \frac{8}{3}{\left( {\frac{S}{{2r}}} \right)^2} = \frac{{{{(a + b + c)}^2}}}{6}$
Cộng theo vế ta được:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} $
$ \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} \\                          + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right)$
$ = \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$    $ \Rightarrow $ Đpcm.

2. Bất đẳng thức Bunhiacốpxki:
Với 2 bộ số ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$ ta luôn có:
             ${\left( {{a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n}} \right)^2} \leqslant \left( {{a_1}^2 + {a_2}^2 + ... + {a_n}^2} \right)\left( {{b_1}^2 + {b_2}^2 + ... + {b_n}^2} \right)$
Nhận xét:
-Nếu như với bất đẳng thức Cauchy, ta luôn phải nhớ điều kiện của các biến là phải không âm thì đối với bất đẳng thức Bunhiacốpxki, ta có thể áp dụng cho các biến là số thực.
-Bất đẳng thức Cauchy và Bunhiacốpxki là 2 bất đẳng thức tỏ ra rất hiệu quả khi dùng để chứng minh các bất đẳng thức lượng giác. Ta sẽ xét các ví dụ sau:

Ví dụ 1:
CMR với mọi $a,b,\alpha $ ta có:
$\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$  
Lời giải:
Ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) = {\sin ^2}\alpha  + \left( {a + b} \right)\sin \alpha \cos \alpha  + ab{\cos ^2}\alpha $
            $ = \frac{{1 - \cos 2\alpha }}{2} + \frac{{\left( {a + b} \right)}}{2}\sin 2\alpha  + ab\frac{{1 + \cos 2\alpha }}{2}$
            $ = \frac{1}{2}\left( {1 + ab + \left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha } \right)$    (1)
Theo Bunhiacốpxki ta có:
        $A\sin x + B\cos x \leqslant \sqrt {{A^2} + {B^2}} $       (2)
Áp dụng (2) ta có:
        $\left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha  \leqslant \sqrt {{{\left( {a + b} \right)}^2} + {{\left( {ab - 1} \right)}^2}}  = \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} $       (3)
Thay (3) vào (1) ta được:
        $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant \frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right)$     (4)
Ta chứng minh bất đẳng thức sau đây đúng với mọi a,b:
        $\frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$     (5)
Thật vậy:
         (5)$ \Leftrightarrow \frac{1}{2} + \frac{{ab}}{2} + \frac{1}{2}\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant 1 + \frac{{{a^2} + {b^2}}}{4} + \frac{{ab}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{{a^2} + {b^2} + 2}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{\left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right)}}{2}$       (6)
Theo Cauchy thì (6) hiển nhiên đúng$ \Rightarrow $ (5) đúng với mọi a,b.
Từ (1) và (5) : với mọi $a,b,\alpha $ ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$
Đẳng thức xảy ra khi ở (1) và (6) dấu bằng đồng thời xảy ra
$ \Leftrightarrow \left\{ \begin{array}
  {a^2} = {b^2}  \\
  \frac{{a + b}}{{\sin 2\alpha }} = \frac{{ab - 1}}{{\cos 2\alpha }}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \tan \alpha  = \frac{{a + b}}{{ab - 1}}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \alpha  = \frac{1}{2}\arctan \frac{{a + b}}{{ab - 1}} + k\frac{\pi }{2}  \\
\end{array}  \right.$ 

Ví dụ 2:
CMR với mọi $\Delta ABC$ ta có:
   $\sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}} $   
với x,y,z là khoảng cách từ điểm M bất kì nằm bên trong $\Delta ABC$ tới 3 cạnh AB, BC, CA của tam giác.
Lời giải:
Ta có:
         $\begin{array}
  {S_{ABC}} = {S_{MAB}} + {S_{MBC}} + {S_{MCA}}  \\
   \Leftrightarrow \frac{{{S_{MAB}}}}{{{S_{ABC}}}} + \frac{{{S_{MBC}}}}{{{S_{ABC}}}} + \frac{{{S_{MCA}}}}{{{S_{ABC}}}} = 1  \\
   \Leftrightarrow \frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}} = 1  \\
\end{array} $
$ \Rightarrow {h_a} + {h_b} + {h_c} = \left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}}} \right)$
Theo Bunhiacốpxki thì:
$\sqrt x  + \sqrt y  + \sqrt z  = \sqrt {{h_a}} \frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \sqrt {{h_b}} \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \sqrt {{h_c}} \frac{{\sqrt z }}{{\sqrt {{h_c}} }} \\
                               \leqslant \sqrt {\left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \frac{{\sqrt z }}{{\sqrt {{h_c}} }}} \right)}  = \sqrt {{h_a} + {h_b} + {h_c}} $
mà $S = \frac{1}{2}a{h_a} = \frac{1}{2}ab\sin C \Rightarrow {h_a} = b\sin C$, ${h_b} = c\sin A$, ${h_c} = a\sin B$
$ \Rightarrow \sqrt {{h_a} + {h_b} + {h_c}}  = \sqrt {\left( {a\sin B + b\sin C + c\sin A} \right)}  = \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}} $
$ \Rightarrow \sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}}  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}}  \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\left\{ \begin{array}
  a = b = c  \\
  x = y = z  \\
\end{array}  \right. \Leftrightarrow \Delta ABC$đều và M là tâm đường tròn nội tiếp$\Delta ABC$.

3. Bất đẳng thức Jensen:
Cho $f:{R^ + } \to R$ thỏa mãn $f(x) + f(y) \geqslant 2f\left( {\frac{{x + y}}{2}} \right)$  $\forall x,y \in {R^ + }$. Khi đó với mọi  ${x_1},{x_2},....,{x_n} \in {R^ + }$ ta có bất đẳng thức sau:
                          $f({x_1}) + f({x_2}) + ...... + f({x_n}) \geqslant nf\left( {\frac{{{x_1} + {x_2} + ... + {x_n}}}{n}} \right)$

-Bất đẳng thức Jensen thật sự là một công cụ chuyên dùng cho chứng minh các bất đẳng thức lượng giác. Tuy không phải là một bất đẳng thức chặt nhưng nếu thấy có những dấu hiệu của BĐT Jensen, chúng ta nên dùng ngay.
 
Ví dụ 1:
Chứng minh rằng với mọi$\Delta ABC$ ta có
                      $\sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}$
Lời giải:
Xét $f(x) = \sin x$ với $x \in \left( {0,\pi } \right)$ $ \Rightarrow f(x)$ là hàm lồi. Theo Jensen ta có:
$f(A) + f(B) + f(C) \leqslant 3f\left( {\frac{{A + B + C}}{3}} \right) = 3\sin \frac{\pi }{3} = \frac{{3\sqrt 3 }}{2} \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$đều ta có:
           $\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3 $
Lời giải:
Xét $f(x) = \tan x$ với$x \in \left( {0,\frac{\pi }{2}} \right)$
$\begin{array}
(1) \Leftrightarrow {a^2}({a^2} - bc) + {b^2}({b^2} - ca) + {c^2}({c^2} - ab) \geqslant 0  \\
\Leftrightarrow \left[ {{a^2} + {{(b + c)}^2}} \right]{(b - c)^2} + \left[ {{b^2} + {{(c + a)}^2}} \right]{(c - a)^2} + \left[ {{c^2} + {{(a + b)}^2}} \right]{(a - b)^2} \geqslant 0  \\
\end{array} $ là hàm lồi. Theo Jensen ta có:
$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right) = 3\sin \frac{\pi }{6} = \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ta có:
$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} + \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \frac{3}{2} + \sqrt 3 $
Lời giải:
Xét $f(x) = \sin x + \tan x$ với $ \Rightarrow $là hàm lồi. Theo Jensen ta có:

$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right)$$ = 3\left( {\tan \frac{\pi }{6} + \sin \frac{\pi }{6}} \right) = \frac{3}{2} + \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

4. Bất đẳng thức Chebyshev:
Với 2 dãy số thực đơn điệu cùng chiều ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$  ta có:
             ${a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n} \geqslant \frac{1}{n}\left( {{a_1} + {a_2} + ... + {a_n}} \right)\left( {{b_1} + {b_2} + ... + {b_n}} \right)$

Ví dụ 1:
Chứng minh rằng với mọi $\Delta ABC$ ta có
               $\frac{{aA + bB + cC}}{{a + b + c}} \geqslant \frac{\pi }{3}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c \Leftrightarrow A \leqslant B \leqslant C$

Theo Chebyshev thì
$\left( {\frac{{a + b + c}}{3}} \right)\left( {\frac{{A + B + C}}{3}} \right) \leqslant \frac{{aA + bB + cC}}{3}$
$ \Rightarrow \frac{{aA + bB + cC}}{3} \geqslant \frac{{A + B + C}}{3} = \frac{\pi }{3}$
Đẳng thức xảy ra khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$ ta có
              $\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} \leqslant \frac{\tan A\tan B\tan C}{3}$
Lời giải:
Không mất tổng quát giả sử$A \geqslant B \geqslant C$
               $ \Rightarrow \left\{ \begin{array}
  \tan A \geqslant \tan B \geqslant \tan C  \\
  \cos A \leqslant \cos B \leqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$ \Leftrightarrow \frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \leqslant \frac{{\tan A + \tan B + \tan C}}{3}$
Mà $\tan A + \tan B + \tan C = \tan A\tan B\tan C$$ \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ ta có
$2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c$
                    $ \Rightarrow \left\{ \begin{array}
  \sin A \leqslant \sin B \leqslant \sin C  \\
  \cos A \geqslant \cos B \geqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$\left( {\frac{{\sin A + \sin B + \sin C}}{3}} \right)\left( {\frac{{\cos A + \cos B + \cos C}}{3}} \right) \geqslant \frac{{\sin A\cos A + \sin B\cos B + \sin C\cos C}}{3}$
$ \Leftrightarrow 2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}} \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

BÀI TẬP:
Bài 1.

CMR với mọi tam giác ABC ta có:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
Theo BĐT Cô-si  ta có:
$\frac{{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}}{3} \geqslant \sqrt[3]{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Mặt khác:
$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} = \frac{{c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{{\frac{1}{4}(\sin A + \sin B + \sin C)}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}} = \frac{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2} + \sin \frac{B}{2}c{\text{os}}\frac{B}{2} + \sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}{{2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
                 $ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Suy ra:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right)$
$ \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}\sin \frac{A}{2}\sin \frac{C}{2}\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}}$  (1)
Mà ta cũng có:
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} \geqslant 3\sqrt 3 $
$ \Rightarrow \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)$
Từ (1),(2) :
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
$ \Rightarrow $ đpcm.

Bài 2.
Cho $\Delta ABC$ nhọn .CMR:
              $\left( {\cos A + \cos B + \cos C} \right)\left( {\operatorname{t} a{\text{nA}} + \tan B + \tan C} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
 Vì $\Delta ABC$ nhọn nên $\cos A,\cos B,\cos C,\operatorname{t} {\text{anA}},\tan B,\tan C$ đều dương.
Theo AM-GM ta có:
$\begin{array}
  \frac{{\cos A + \cos B + \cos C}}{3} \geqslant \sqrt[3]{{\cos A\cos B\cos C}}  \\
  \operatorname{t} a{\text{nA}} + \tan B + \tan C = \operatorname{t} a{\text{nA}}\tan B\tan C = \frac{{\sin A\sin B\sin C}}{{\cos A\cos B\cos C}}  \\
\end{array} $
$ = \frac{{\frac{1}{4}(\sin 2A + \sin 2B + \sin 2C)}}{{\cos A\cos B\cos C}} = \frac{{\sin A\cos A + \sin B\cos b + \sin C\cos C}}{{2\cos A\cos B\cos C}}$
$ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{2\cos A\cos B\cos C}}$
Suy ra:
$\begin{array}
  (\cos A + \cos B + \cos C)(\operatorname{t} a{\text{nA}}\tan B\tan C)  \\
   \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\cos A\cos B\cos C\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{\cos A\cos B\cos C}}  \\
   = \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}}(1)  \\
\end{array} $
Mặt khác:
$\begin{array}
  \tan {\text{A}}\tan B\tan C \geqslant 3\sqrt 3   \\
   \Rightarrow \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)  \\
\end{array} $
Từ (1),(2) suy ra:
$(\cos A + \cos B + \cos C)(\tan {\text{A}}\tan B\tan C) \geqslant \frac{{9\sqrt 3 }}{2}$  $ \Rightarrow $ đpcm.

Bài 4.
Cho tam giác ABC bất kì .CMR:
$\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} \geqslant 4 - \frac{{2r}}{R}$
Lời giải:
Ta có S=$\frac{{abc}}{{4R}} = pr = \sqrt {p(p - a)(p - b)(p - c)} $
$\begin{array}
   \Rightarrow \frac{{2r}}{R} = \frac{{8{S^2}}}{{pabc}} = \frac{{{a^2}b + a{b^2} + {b^2}c + b{c^2} + {c^2}a + c{a^2} - {a^3} - {b^3} - {c^3} - 2abc}}{{abc}}  \\
   \Rightarrow 4 - \frac{{2r}}{R} = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + 6 - (\frac{a}{b} + \frac{b}{a} + \frac{b}{c} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c}) \leqslant \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}  \\
\end{array} $
Suy ra đpcm

Bài 5.
Cho tam tam giác ABC.CMR
$(\frac{a}{{\cos A}} + \frac{b}{{\cos B}} - c)(\frac{b}{{\cos b}} + \frac{c}{{\cos C}} - a)(\frac{c}{{\cos C}} + \frac{a}{{\cos A}} - b) \geqslant 27abc$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với: $\begin{array}
  (\frac{{\sin C}}{{\cos A\cos B}} - \sin C)(\frac{{\sin A}}{{\cos B\cos C}} - \sin A)(\frac{{\sin B}}{{\cos C\cos A}} - \sin B) \geqslant 27\sin A\sin B\sin C  \\
   \Leftrightarrow \frac{{1 - \cos A\cos B}}{{\cos A\cos B}}.\frac{{1 - \cos B\cos C}}{{\cos B\cos C}}.\frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant 27  \\
\end{array} $
Đặt x = tanA/2,y = tanB/2,z = tanC/2, khi đó ta có
$\cos A = \frac{{1 - {x^2}}}{{1 + {x^2}}},\cos B = \frac{{1 - {y^2}}}{{1 + {y^2}}},\cos C = \frac{{1 - {z^2}}}{{1 + {z^2}}}$
Và $\tan A = \frac{{2x}}{{1 - {x^2}}},\tan B = \frac{{2y}}{{1 - {y^2}}},\tan C = \frac{{2z}}{{1 - {z^2}}}$
Khi đó :$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} = \frac{{2({x^2} + {y^2})}}{{(1 - {x^2})(1 - {y^2})}}$ mặt khác :${x^2} + {y^2} \geqslant 2xy$ nên:
$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} \geqslant \frac{{2x}}{{1 - {x^2}}}.\frac{{2y}}{{1 - {y^2}}} = \tan A\tan B$    (1)
Tương tự ta có:
$\begin{array}
  \frac{{1 - \cos B\cos C}}{{\cos B\cos C}} \geqslant \tan B\tan C  \\
  \frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant \tan C\tan A  \\
\end{array} $
Nhân vế theo vế (1) (2) và (3) ta được đpcm

Chat chit và chém gió
  • Windy: sao lại loại? 9/3/2014 12:15:37 AM
  • Windy: nghiệm đúng mờ 9/3/2014 12:15:45 AM
  • nthuyhang2: thay vào cũng đúng á c 9/3/2014 12:16:03 AM
  • nthuyhang2: mà cái nghiệm t2 của c í 9/3/2014 12:16:37 AM
  • nthuyhang2: e k ra thế đâu 9/3/2014 12:16:44 AM
  • nthuyhang2: ra thế này ạ 9/3/2014 12:17:13 AM
  • nthuyhang2: 0,9999998757 9/3/2014 12:17:21 AM
  • Windy: @@ 9/3/2014 12:17:27 AM
  • Windy: biết là vậy 9/3/2014 12:17:37 AM
  • Windy: ý chị là chuyển về nghiệm căn í 9/3/2014 12:17:47 AM
  • Windy: nó ra là 9/3/2014 12:17:54 AM
  • nthuyhang2: nhưng 2 cái này có bằng nhau đâu ạ 9/3/2014 12:18:05 AM
  • nthuyhang2: cj viết lại cái căn đi 9/3/2014 12:18:12 AM
  • Windy: đấy chỉ là căn đen ta ' thôi 9/3/2014 12:18:53 AM
  • nthuyhang2: ah 9/3/2014 12:19:02 AM
  • Windy: còn nghiệm thì chắc là như này này 9/3/2014 12:19:07 AM
  • Windy: -4023031/8048072 9/3/2014 12:19:36 AM
  • Windy: =.= 9/3/2014 12:19:39 AM
  • Windy: a 9/3/2014 12:19:54 AM
  • Windy: nhàm 9/3/2014 12:19:56 AM
  • Windy: nhầm 9/3/2014 12:20:00 AM
  • nthuyhang2: thế là bn ạ 9/3/2014 12:20:10 AM
  • nthuyhang2: cj windy ơi 9/3/2014 12:21:02 AM
  • Windy: đây 9/3/2014 12:21:08 AM
  • Windy: -8046063/8048072 9/3/2014 12:21:38 AM
  • nthuyhang2: sao k giống cái của e cj nhỉ 9/3/2014 12:22:13 AM
  • nthuyhang2: e tính = máy tính mà 9/3/2014 12:22:23 AM
  • Windy:9/3/2014 12:22:37 AM
  • Windy: so số thập phân lại k ra như thế 9/3/2014 12:22:51 AM
  • Windy: @@ 9/3/2014 12:22:53 AM
  • Windy: hầy 9/3/2014 12:22:59 AM
  • Windy: =.= 9/3/2014 12:23:05 AM
  • nthuyhang2: cj tính kiểu j cj 9/3/2014 12:23:30 AM
  • Windy: để ra nghiệm đúng thì chỉ còn cách tính đen ta r dùng công thức nghiệm chứ tính kiểu gì 9/3/2014 12:24:02 AM
  • Windy: -_- 9/3/2014 12:24:04 AM
  • nthuyhang2: vg 9/3/2014 12:24:10 AM
  • nthuyhang2: thế chắc cái của cj đúng r 9/3/2014 12:25:13 AM
  • Windy: làm gì có ra giống máy đâu mà đúng 9/3/2014 12:25:31 AM
  • nthuyhang2:9/3/2014 12:25:48 AM
  • Windy: ơ 9/3/2014 12:26:16 AM
  • Windy: để thử lại xem nào 9/3/2014 12:26:22 AM
  • nthuyhang2: e dùng den ta ra giống máy mà cj 9/3/2014 12:27:36 AM
  • Windy: ơ 9/3/2014 12:27:42 AM
  • Windy: thế à 9/3/2014 12:27:45 AM
  • nthuyhang2: mỗi tội nó vẫn là số thập phân 9/3/2014 12:27:51 AM
  • Windy: hở 9/3/2014 12:27:56 AM
  • Windy: -_- 9/3/2014 12:27:58 AM
  • nthuyhang2: ci chuyển sang phân số hộ e đc k? 9/3/2014 12:28:10 AM
  • Windy: dùng đen ta r để căn e ơi =.= 9/3/2014 12:28:17 AM
  • nthuyhang2: là sao cj 9/3/2014 12:28:41 AM
  • Windy: chị có phải thánh đâu mờ chuyển đc từ số thập phân sang phân số 9/3/2014 12:28:43 AM
  • nthuyhang2: nhưng nó chả ra căn 9/3/2014 12:28:57 AM
  • Windy: căn đen ta k đc bấm máy -_- 9/3/2014 12:29:25 AM
  • Windy: đen ta e ra như nào 9/3/2014 12:29:39 AM
  • Windy: gõ thử vài số coi nào 9/3/2014 12:29:48 AM
  • nthuyhang2: den ta = 9/3/2014 12:29:59 AM
  • nthuyhang2: 16088117 9/3/2014 12:30:05 AM
  • Windy: k giống 9/3/2014 12:31:54 AM
  • Windy: =.= 9/3/2014 12:31:56 AM
  • nthuyhang2: cj ra thế nào 9/3/2014 12:32:10 AM
  • Windy: đen ta ra dài lắm 9/3/2014 12:33:21 AM
  • Windy: nhưng lần này căn lên số đẹp cực 9/3/2014 12:33:34 AM
  • nthuyhang2: đẹp là bn cj 9/3/2014 12:33:46 AM
  • Windy: căn đen ta =8046065 9/3/2014 12:33:53 AM
  • Windy: ra nghiệm chuẩn như máy luôn nài 9/3/2014 12:34:04 AM
  • nthuyhang2: nghiệm bn cj 9/3/2014 12:34:34 AM
  • nthuyhang2: căn den ta mà dìa thế á cj 9/3/2014 12:34:50 AM
  • Windy: x=8046065/8048072 9/3/2014 12:34:59 AM
  • Windy: lần này sai là chị bỏ cuộc đấy 9/3/2014 12:35:12 AM
  • Windy: ngủ luôn đây 9/3/2014 12:35:18 AM
  • Windy: =.= 9/3/2014 12:35:23 AM
  • nthuyhang2: cj ơi 9/3/2014 12:35:29 AM
  • nthuyhang2: lại sai 9/3/2014 12:35:34 AM
  • Windy: hử? 9/3/2014 12:35:36 AM
  • Windy: đúng đấy 9/3/2014 12:35:45 AM
  • Windy: 100% luôn 9/3/2014 12:35:53 AM
  • Windy: giống hệt máy còn gì 9/3/2014 12:36:03 AM
  • nthuyhang2: mà căn den ta đấy sao chị ra nghiệm thế kia ạ 9/3/2014 12:36:43 AM
  • nthuyhang2: thôi e cũng ngủ luôn đây 9/3/2014 12:37:42 AM
  • Windy: hằng 9/3/2014 12:37:45 AM
  • Windy: nhầm r 9/3/2014 12:37:47 AM
  • nthuyhang2: :sao ạ 9/3/2014 12:37:52 AM
  • Windy: x=8048071/8048072 9/3/2014 12:38:09 AM
  • Windy: đấy 9/3/2014 12:38:25 AM
  • Windy: như này mới đúng 9/3/2014 12:38:34 AM
  • nthuyhang2: sao ra căn đẹp thế đc cj nhể 9/3/2014 12:39:08 AM
  • Windy: đen ta chị =6,473916198 nhân 10^13 9/3/2014 12:39:34 AM
  • nthuyhang2: vg 9/3/2014 12:39:44 AM
  • nthuyhang2: thôi e ngủ nhá 9/3/2014 12:39:53 AM
  • Windy: bấm máy căn nó ra 8046065 9/3/2014 12:39:55 AM
  • Windy:9/3/2014 12:40:01 AM
  • Windy: mệt thật 9/3/2014 12:40:04 AM
  • Windy: sleepy 9/3/2014 12:40:09 AM
  • nthuyhang2: có gì hôm khác e gặp chj 9/3/2014 12:40:16 AM
  • nthuyhang2: yawn 9/3/2014 12:40:41 AM
  • huongphu98: ai giỏi toán hkkkk 9/3/2014 12:27:43 PM
  • huongphu98: cho tui hỏi vssss nờ 9/3/2014 12:27:51 PM
  • huongphu98: làm sao để ghi căn với phân số trên web nhỉ 9/3/2014 12:29:47 PM
  • nthuyhang2: c windy ơi c onl k 9/3/2014 1:03:01 PM
  • huongphu98: có ai online kkk 9/3/2014 1:38:03 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ BQT
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Chuyên Cơ Cuối Cùng
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon98
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sowkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • giola_2503
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Faker ^^
  • Death
  • devilphuong96
  • tqmaries34
  • bontiton96
  • hoang10a5.bc
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • hey
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • Lăn tăn
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • dihoklafdihok
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • fan.arsenalfc
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Không Ai Cả
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Min Tồ
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • kto138
  • Hòn Sỏi Buồn
  • teengirl_hn1998
  • trilac2013
  • Windy
  • kuzulies
  • ★.★Hoàng Huy★.★
  • nhoknana95
  • hoctainha
  • langvohue1234
  • fglory2912
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • c.x.sadhp1999
  • huyhoangfan
  • Duy Phong
  • hattuyetmuadong_banggia
  • hikichbo