SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC


Trong chuyên đề này, ta sẽ tìm hiểu về 4 bất đẳng thức cổ điển và ứng dụng của chúng trong giải bất đẳng thức lượng giác. Các bất đẳng thức bao gồm:
1. Bất đẳng thức Cauchy (AM – GM)
2. Bất đẳng thức Bunhiacốpxki
3. Bất đẳng thức Jensen
4. Bất đẳng thức Chebyshev

1. Bất đẳng thức Cauchy (AM – GM):
Với mọi số thực không âm ${a_1},{a_2},....,{a_n}$ ta luôn có:
              $\frac{{{a_1} + {a_2} + ... + {a_n}}}{n} \geqslant \sqrt[n]{{{a_1}{a_2}...{a_n}}}$

Ví dụ 1:
Cho A,B,C là 3 đỉnh của 1 tam giác nhọn. CMR:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Lời giải:
Vì $\tan \left( {A + B} \right) =  - \tan C \Leftrightarrow \frac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} =  - \tan C$
$ \Rightarrow \tan A + \tan B + \tan C = \tan A.\tan B.\tan C$
Tam giác ABC nhọn nên tanA, tanB, tanC dương.
Theo Cauchy ta có:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt[3]{{\tan A.\tan B.\tan C}} = 3\sqrt[3]{{\tan A + \tan B + \tan C}}$
            $ \Rightarrow {\left( {\tan A + \tan B + \tan C} \right)^2} \geqslant 27\left( {\tan A + \tan B + \tan C} \right)$
    $ \Rightarrow \tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Đẳng thức xảy ra$ \Leftrightarrow A = B = C \Leftrightarrow \Delta ABC$đều.

Ví dụ 2 :
Cho $\Delta ABC$ nhọn. CMR: $\cot A + \cot B + \cot C \geqslant \sqrt 3 $
Lời giải:
Ta luôn có:
         $\begin{array}
  \cot \left( {A + B} \right) =  - \cot C  \\
   \Leftrightarrow \frac{{\cot A.\cot B - 1}}{{\cot A + \cot B}} =  - \cot C  \\
   \Leftrightarrow \cot A.\cot B + \cot B.\cot C + \cot C.\cot A = 1  \\
\end{array} $
Khi đó:
         ${\left( {\cot A - \cot B} \right)^2} + {\left( {\cot B - \cot C} \right)^2} + {\left( {\cot C - \cot A} \right)^2} \geqslant 0$
    $ \Leftrightarrow {\left( {\cot A + \cot B + \cot C} \right)^2} \geqslant 3\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right) = 3$
    $ \Rightarrow \cot A + \cot B + \cot C \geqslant \sqrt 3 $
Dấu bằng xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ nhọn ta  có:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} \\
                           \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$
Lời giải:
Ta có:  $\frac{{\cos A}}{{2\cos \frac{A}{2}}} = \sin \frac{A}{2}\cot \frac{A}{2}$
$ \Rightarrow \frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} = \left( {\sin \frac{A}{2}\sin \frac{B}{2}} \right)\left( {\frac{3}{4}\cot A\cot B} \right)$
Theo Cauchy:
$\frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} \leqslant {\left( {\frac{{\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B}}{2}} \right)^2}$
$ \Rightarrow \sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B} \right)$
Tương tự ta có:
$\sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{B}{2}\sin \frac{C}{2} + \frac{3}{4}\cot B\cot C} \right)$
$S = pr \Rightarrow \frac{8}{3}{\left( {\frac{S}{{2r}}} \right)^2} = \frac{{{{(a + b + c)}^2}}}{6}$
Cộng theo vế ta được:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} $
$ \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} \\                          + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right)$
$ = \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$    $ \Rightarrow $ Đpcm.

2. Bất đẳng thức Bunhiacốpxki:
Với 2 bộ số ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$ ta luôn có:
             ${\left( {{a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n}} \right)^2} \leqslant \left( {{a_1}^2 + {a_2}^2 + ... + {a_n}^2} \right)\left( {{b_1}^2 + {b_2}^2 + ... + {b_n}^2} \right)$
Nhận xét:
-Nếu như với bất đẳng thức Cauchy, ta luôn phải nhớ điều kiện của các biến là phải không âm thì đối với bất đẳng thức Bunhiacốpxki, ta có thể áp dụng cho các biến là số thực.
-Bất đẳng thức Cauchy và Bunhiacốpxki là 2 bất đẳng thức tỏ ra rất hiệu quả khi dùng để chứng minh các bất đẳng thức lượng giác. Ta sẽ xét các ví dụ sau:

Ví dụ 1:
CMR với mọi $a,b,\alpha $ ta có:
$\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$  
Lời giải:
Ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) = {\sin ^2}\alpha  + \left( {a + b} \right)\sin \alpha \cos \alpha  + ab{\cos ^2}\alpha $
            $ = \frac{{1 - \cos 2\alpha }}{2} + \frac{{\left( {a + b} \right)}}{2}\sin 2\alpha  + ab\frac{{1 + \cos 2\alpha }}{2}$
            $ = \frac{1}{2}\left( {1 + ab + \left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha } \right)$    (1)
Theo Bunhiacốpxki ta có:
        $A\sin x + B\cos x \leqslant \sqrt {{A^2} + {B^2}} $       (2)
Áp dụng (2) ta có:
        $\left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha  \leqslant \sqrt {{{\left( {a + b} \right)}^2} + {{\left( {ab - 1} \right)}^2}}  = \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} $       (3)
Thay (3) vào (1) ta được:
        $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant \frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right)$     (4)
Ta chứng minh bất đẳng thức sau đây đúng với mọi a,b:
        $\frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$     (5)
Thật vậy:
         (5)$ \Leftrightarrow \frac{1}{2} + \frac{{ab}}{2} + \frac{1}{2}\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant 1 + \frac{{{a^2} + {b^2}}}{4} + \frac{{ab}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{{a^2} + {b^2} + 2}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{\left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right)}}{2}$       (6)
Theo Cauchy thì (6) hiển nhiên đúng$ \Rightarrow $ (5) đúng với mọi a,b.
Từ (1) và (5) : với mọi $a,b,\alpha $ ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$
Đẳng thức xảy ra khi ở (1) và (6) dấu bằng đồng thời xảy ra
$ \Leftrightarrow \left\{ \begin{array}
  {a^2} = {b^2}  \\
  \frac{{a + b}}{{\sin 2\alpha }} = \frac{{ab - 1}}{{\cos 2\alpha }}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \tan \alpha  = \frac{{a + b}}{{ab - 1}}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \alpha  = \frac{1}{2}\arctan \frac{{a + b}}{{ab - 1}} + k\frac{\pi }{2}  \\
\end{array}  \right.$ 

Ví dụ 2:
CMR với mọi $\Delta ABC$ ta có:
   $\sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}} $   
với x,y,z là khoảng cách từ điểm M bất kì nằm bên trong $\Delta ABC$ tới 3 cạnh AB, BC, CA của tam giác.
Lời giải:
Ta có:
         $\begin{array}
  {S_{ABC}} = {S_{MAB}} + {S_{MBC}} + {S_{MCA}}  \\
   \Leftrightarrow \frac{{{S_{MAB}}}}{{{S_{ABC}}}} + \frac{{{S_{MBC}}}}{{{S_{ABC}}}} + \frac{{{S_{MCA}}}}{{{S_{ABC}}}} = 1  \\
   \Leftrightarrow \frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}} = 1  \\
\end{array} $
$ \Rightarrow {h_a} + {h_b} + {h_c} = \left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}}} \right)$
Theo Bunhiacốpxki thì:
$\sqrt x  + \sqrt y  + \sqrt z  = \sqrt {{h_a}} \frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \sqrt {{h_b}} \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \sqrt {{h_c}} \frac{{\sqrt z }}{{\sqrt {{h_c}} }} \\
                               \leqslant \sqrt {\left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \frac{{\sqrt z }}{{\sqrt {{h_c}} }}} \right)}  = \sqrt {{h_a} + {h_b} + {h_c}} $
mà $S = \frac{1}{2}a{h_a} = \frac{1}{2}ab\sin C \Rightarrow {h_a} = b\sin C$, ${h_b} = c\sin A$, ${h_c} = a\sin B$
$ \Rightarrow \sqrt {{h_a} + {h_b} + {h_c}}  = \sqrt {\left( {a\sin B + b\sin C + c\sin A} \right)}  = \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}} $
$ \Rightarrow \sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}}  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}}  \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\left\{ \begin{array}
  a = b = c  \\
  x = y = z  \\
\end{array}  \right. \Leftrightarrow \Delta ABC$đều và M là tâm đường tròn nội tiếp$\Delta ABC$.

3. Bất đẳng thức Jensen:
Cho $f:{R^ + } \to R$ thỏa mãn $f(x) + f(y) \geqslant 2f\left( {\frac{{x + y}}{2}} \right)$  $\forall x,y \in {R^ + }$. Khi đó với mọi  ${x_1},{x_2},....,{x_n} \in {R^ + }$ ta có bất đẳng thức sau:
                          $f({x_1}) + f({x_2}) + ...... + f({x_n}) \geqslant nf\left( {\frac{{{x_1} + {x_2} + ... + {x_n}}}{n}} \right)$

-Bất đẳng thức Jensen thật sự là một công cụ chuyên dùng cho chứng minh các bất đẳng thức lượng giác. Tuy không phải là một bất đẳng thức chặt nhưng nếu thấy có những dấu hiệu của BĐT Jensen, chúng ta nên dùng ngay.
 
Ví dụ 1:
Chứng minh rằng với mọi$\Delta ABC$ ta có
                      $\sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}$
Lời giải:
Xét $f(x) = \sin x$ với $x \in \left( {0,\pi } \right)$ $ \Rightarrow f(x)$ là hàm lồi. Theo Jensen ta có:
$f(A) + f(B) + f(C) \leqslant 3f\left( {\frac{{A + B + C}}{3}} \right) = 3\sin \frac{\pi }{3} = \frac{{3\sqrt 3 }}{2} \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$đều ta có:
           $\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3 $
Lời giải:
Xét $f(x) = \tan x$ với$x \in \left( {0,\frac{\pi }{2}} \right)$
$\begin{array}
(1) \Leftrightarrow {a^2}({a^2} - bc) + {b^2}({b^2} - ca) + {c^2}({c^2} - ab) \geqslant 0  \\
\Leftrightarrow \left[ {{a^2} + {{(b + c)}^2}} \right]{(b - c)^2} + \left[ {{b^2} + {{(c + a)}^2}} \right]{(c - a)^2} + \left[ {{c^2} + {{(a + b)}^2}} \right]{(a - b)^2} \geqslant 0  \\
\end{array} $ là hàm lồi. Theo Jensen ta có:
$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right) = 3\sin \frac{\pi }{6} = \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ta có:
$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} + \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \frac{3}{2} + \sqrt 3 $
Lời giải:
Xét $f(x) = \sin x + \tan x$ với $ \Rightarrow $là hàm lồi. Theo Jensen ta có:

$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right)$$ = 3\left( {\tan \frac{\pi }{6} + \sin \frac{\pi }{6}} \right) = \frac{3}{2} + \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

4. Bất đẳng thức Chebyshev:
Với 2 dãy số thực đơn điệu cùng chiều ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$  ta có:
             ${a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n} \geqslant \frac{1}{n}\left( {{a_1} + {a_2} + ... + {a_n}} \right)\left( {{b_1} + {b_2} + ... + {b_n}} \right)$

Ví dụ 1:
Chứng minh rằng với mọi $\Delta ABC$ ta có
               $\frac{{aA + bB + cC}}{{a + b + c}} \geqslant \frac{\pi }{3}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c \Leftrightarrow A \leqslant B \leqslant C$

Theo Chebyshev thì
$\left( {\frac{{a + b + c}}{3}} \right)\left( {\frac{{A + B + C}}{3}} \right) \leqslant \frac{{aA + bB + cC}}{3}$
$ \Rightarrow \frac{{aA + bB + cC}}{3} \geqslant \frac{{A + B + C}}{3} = \frac{\pi }{3}$
Đẳng thức xảy ra khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$ ta có
              $\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} \leqslant \frac{\tan A\tan B\tan C}{3}$
Lời giải:
Không mất tổng quát giả sử$A \geqslant B \geqslant C$
               $ \Rightarrow \left\{ \begin{array}
  \tan A \geqslant \tan B \geqslant \tan C  \\
  \cos A \leqslant \cos B \leqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$ \Leftrightarrow \frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \leqslant \frac{{\tan A + \tan B + \tan C}}{3}$
Mà $\tan A + \tan B + \tan C = \tan A\tan B\tan C$$ \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ ta có
$2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c$
                    $ \Rightarrow \left\{ \begin{array}
  \sin A \leqslant \sin B \leqslant \sin C  \\
  \cos A \geqslant \cos B \geqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$\left( {\frac{{\sin A + \sin B + \sin C}}{3}} \right)\left( {\frac{{\cos A + \cos B + \cos C}}{3}} \right) \geqslant \frac{{\sin A\cos A + \sin B\cos B + \sin C\cos C}}{3}$
$ \Leftrightarrow 2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}} \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

BÀI TẬP:
Bài 1.

CMR với mọi tam giác ABC ta có:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
Theo BĐT Cô-si  ta có:
$\frac{{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}}{3} \geqslant \sqrt[3]{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Mặt khác:
$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} = \frac{{c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{{\frac{1}{4}(\sin A + \sin B + \sin C)}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}} = \frac{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2} + \sin \frac{B}{2}c{\text{os}}\frac{B}{2} + \sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}{{2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
                 $ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Suy ra:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right)$
$ \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}\sin \frac{A}{2}\sin \frac{C}{2}\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}}$  (1)
Mà ta cũng có:
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} \geqslant 3\sqrt 3 $
$ \Rightarrow \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)$
Từ (1),(2) :
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
$ \Rightarrow $ đpcm.

Bài 2.
Cho $\Delta ABC$ nhọn .CMR:
              $\left( {\cos A + \cos B + \cos C} \right)\left( {\operatorname{t} a{\text{nA}} + \tan B + \tan C} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
 Vì $\Delta ABC$ nhọn nên $\cos A,\cos B,\cos C,\operatorname{t} {\text{anA}},\tan B,\tan C$ đều dương.
Theo AM-GM ta có:
$\begin{array}
  \frac{{\cos A + \cos B + \cos C}}{3} \geqslant \sqrt[3]{{\cos A\cos B\cos C}}  \\
  \operatorname{t} a{\text{nA}} + \tan B + \tan C = \operatorname{t} a{\text{nA}}\tan B\tan C = \frac{{\sin A\sin B\sin C}}{{\cos A\cos B\cos C}}  \\
\end{array} $
$ = \frac{{\frac{1}{4}(\sin 2A + \sin 2B + \sin 2C)}}{{\cos A\cos B\cos C}} = \frac{{\sin A\cos A + \sin B\cos b + \sin C\cos C}}{{2\cos A\cos B\cos C}}$
$ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{2\cos A\cos B\cos C}}$
Suy ra:
$\begin{array}
  (\cos A + \cos B + \cos C)(\operatorname{t} a{\text{nA}}\tan B\tan C)  \\
   \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\cos A\cos B\cos C\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{\cos A\cos B\cos C}}  \\
   = \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}}(1)  \\
\end{array} $
Mặt khác:
$\begin{array}
  \tan {\text{A}}\tan B\tan C \geqslant 3\sqrt 3   \\
   \Rightarrow \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)  \\
\end{array} $
Từ (1),(2) suy ra:
$(\cos A + \cos B + \cos C)(\tan {\text{A}}\tan B\tan C) \geqslant \frac{{9\sqrt 3 }}{2}$  $ \Rightarrow $ đpcm.

Bài 4.
Cho tam giác ABC bất kì .CMR:
$\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} \geqslant 4 - \frac{{2r}}{R}$
Lời giải:
Ta có S=$\frac{{abc}}{{4R}} = pr = \sqrt {p(p - a)(p - b)(p - c)} $
$\begin{array}
   \Rightarrow \frac{{2r}}{R} = \frac{{8{S^2}}}{{pabc}} = \frac{{{a^2}b + a{b^2} + {b^2}c + b{c^2} + {c^2}a + c{a^2} - {a^3} - {b^3} - {c^3} - 2abc}}{{abc}}  \\
   \Rightarrow 4 - \frac{{2r}}{R} = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + 6 - (\frac{a}{b} + \frac{b}{a} + \frac{b}{c} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c}) \leqslant \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}  \\
\end{array} $
Suy ra đpcm

Bài 5.
Cho tam tam giác ABC.CMR
$(\frac{a}{{\cos A}} + \frac{b}{{\cos B}} - c)(\frac{b}{{\cos b}} + \frac{c}{{\cos C}} - a)(\frac{c}{{\cos C}} + \frac{a}{{\cos A}} - b) \geqslant 27abc$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với: $\begin{array}
  (\frac{{\sin C}}{{\cos A\cos B}} - \sin C)(\frac{{\sin A}}{{\cos B\cos C}} - \sin A)(\frac{{\sin B}}{{\cos C\cos A}} - \sin B) \geqslant 27\sin A\sin B\sin C  \\
   \Leftrightarrow \frac{{1 - \cos A\cos B}}{{\cos A\cos B}}.\frac{{1 - \cos B\cos C}}{{\cos B\cos C}}.\frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant 27  \\
\end{array} $
Đặt x = tanA/2,y = tanB/2,z = tanC/2, khi đó ta có
$\cos A = \frac{{1 - {x^2}}}{{1 + {x^2}}},\cos B = \frac{{1 - {y^2}}}{{1 + {y^2}}},\cos C = \frac{{1 - {z^2}}}{{1 + {z^2}}}$
Và $\tan A = \frac{{2x}}{{1 - {x^2}}},\tan B = \frac{{2y}}{{1 - {y^2}}},\tan C = \frac{{2z}}{{1 - {z^2}}}$
Khi đó :$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} = \frac{{2({x^2} + {y^2})}}{{(1 - {x^2})(1 - {y^2})}}$ mặt khác :${x^2} + {y^2} \geqslant 2xy$ nên:
$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} \geqslant \frac{{2x}}{{1 - {x^2}}}.\frac{{2y}}{{1 - {y^2}}} = \tan A\tan B$    (1)
Tương tự ta có:
$\begin{array}
  \frac{{1 - \cos B\cos C}}{{\cos B\cos C}} \geqslant \tan B\tan C  \\
  \frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant \tan C\tan A  \\
\end{array} $
Nhân vế theo vế (1) (2) và (3) ta được đpcm

Chat chit và chém gió
  • Cát Buồn: jea, đừng buồn mà 11/27/2014 11:42:12 PM
  • Cát Buồn: thui, e đóng cửa sám hối đây 11/27/2014 11:42:29 PM
  • Cát Buồn: trc tiên 11/27/2014 11:42:40 PM
  • Cát Buồn: e cũng có 3 từ muốn ns nè 11/27/2014 11:43:05 PM
  • Jea...student: khoan 11/27/2014 11:43:30 PM
  • tuanthanh311297: nerd 11/27/2014 11:43:32 PM
  • Jea...student: đừng nói 11/27/2014 11:43:39 PM
  • Jea...student: ok big_grin 11/27/2014 11:43:44 PM
  • Cát Buồn: sao đừng rùi lại ok nè 11/27/2014 11:44:04 PM
  • Jea...student: ok ko nói 11/27/2014 11:44:16 PM
  • Cát Buồn: ko ns sao 11/27/2014 11:44:28 PM
  • Cát Buồn: ko hối hận chớ 11/27/2014 11:44:35 PM
  • Jea...student: uk 11/27/2014 11:44:51 PM
  • Cát Buồn: ok, bạn hiền 11/27/2014 11:45:00 PM
  • Jea...student: thui 11/27/2014 11:45:09 PM
  • Cát Buồn: g9 11/27/2014 11:45:09 PM
  • Jea...student: gb 11/27/2014 11:45:16 PM
  • Cát Buồn: kiss 11/27/2014 11:45:28 PM
  • Cát Buồn: wave 11/27/2014 11:45:38 PM
  • Jea...student: ấy 11/27/2014 11:45:53 PM
  • Jea...student: giữ hôn lại 11/27/2014 11:46:05 PM
  • Jea...student: happy 11/27/2014 11:46:08 PM
  • Jea...student: cất đi 11/27/2014 11:46:20 PM
  • tuanthanh311297: wave chào cát crying 11/27/2014 11:46:47 PM
  • ~Kezo~: wave 11/27/2014 11:47:05 PM
  • Cát Buồn: chào a thành, kezo, chị min nha 11/27/2014 11:47:19 PM
  • Jea...student: sad 11/27/2014 11:47:35 PM
  • Cát Buồn: ps: a thành, e đi ngủ chứ có phải đi chết đâu mà khóc dữ vậy 11/27/2014 11:47:50 PM
  • ~Kezo~: crying 11/27/2014 11:48:01 PM
  • ~Kezo~: cryingcryingcrying 11/27/2014 11:48:09 PM
  • tuanthanh311297: đó có phải mỗi a khóc đâu 11/27/2014 11:48:11 PM
  • Cát Buồn: jea nè, đừng xị mặt thế, cười lên cho đẹp trai nè 11/27/2014 11:48:15 PM
  • ~Kezo~: phbbbbt 11/27/2014 11:48:26 PM
  • Cát Buồn: ==" 11/27/2014 11:48:28 PM
  • tuanthanh311297: căn bản cười vs ko cười vân xấu rolling_on_the_floor 11/27/2014 11:48:38 PM
  • Jea...student: cát 11/27/2014 11:48:52 PM
  • Cát Buồn: kezo nè, sau này chị thuê e khóc đám ma cho chị nhá 11/27/2014 11:48:59 PM
  • Cát Buồn: jea, gì vậy 11/27/2014 11:49:07 PM
  • tuanthanh311297: cát a thuê đó 11/27/2014 11:49:09 PM
  • Jea...student: lần này 11/27/2014 11:49:22 PM
  • ~Kezo~: not_worthy 11/27/2014 11:49:26 PM
  • Jea...student: a nói thật 11/27/2014 11:49:46 PM
  • ~Kezo~: thôi 11/27/2014 11:50:26 PM
  • Cát Buồn: a ns thật cái gì cơ 11/27/2014 11:50:29 PM
  • ~Kezo~: em đi nhởi đây 11/27/2014 11:50:32 PM
  • Còii: Kezo ngủ đi e 11/27/2014 11:50:41 PM
  • tuanthanh311297: kezo lo học đi 11/27/2014 11:50:44 PM
  • Jea...student: nói ra e đồng ý nhé 11/27/2014 11:51:17 PM
  • ~Kezo~: ai cx xua đuổi 11/27/2014 11:52:00 PM
  • ~Kezo~: như 1 sinh vật lạ 11/27/2014 11:52:08 PM
  • tuanthanh311297: rolling_on_the_floor 11/27/2014 11:52:17 PM
  • Cát Buồn: kezo ngoan, đi ngủ giữ gìn nhan sắc chứ e 11/27/2014 11:52:49 PM
  • ~Kezo~: confused 11/27/2014 11:53:15 PM
  • tuanthanh311297: dont_tell_anyone 11/27/2014 11:54:05 PM
  • Jea...student: khinh lần 2 sad thui v 11/27/2014 11:54:19 PM
  • Cát Buồn: jea,a ns gì thê 11/27/2014 11:54:25 PM
  • Cát Buồn: thế 11/27/2014 11:54:28 PM
  • Jea...student: thui 11/27/2014 11:54:46 PM
  • Jea...student: ko nói j het 11/27/2014 11:54:52 PM
  • Cát Buồn: e đang chép văn, thành ra thỉnh thoản ms nhìn đc mà 11/27/2014 11:54:53 PM
  • Cát Buồn: đừng giận mờ 11/27/2014 11:55:25 PM
  • Jea...student: cát 11/27/2014 11:56:23 PM
  • Cát Buồn: vâng 11/27/2014 11:56:30 PM
  • Jea...student: anh yeu em happy 11/27/2014 11:57:44 PM
  • Cát Buồn: e vẫn còn bé lắm a ơi 11/27/2014 11:58:28 PM
  • tuanthanh311297: party 11/27/2014 11:58:31 PM
  • Cát Buồn: a thành 11/27/2014 11:58:56 PM
  • Cát Buồn: lượn 11/27/2014 11:59:00 PM
  • tuanthanh311297: -_- 11/27/2014 11:59:04 PM
  • ~Kezo~: rolling_on_the_floor 11/27/2014 11:59:20 PM
  • Jea...student: tội 11/27/2014 11:59:41 PM
  • Cát Buồn: jea, e sẽ ko bh tùy tiện ns yêu ai 11/27/2014 11:59:51 PM
  • Cát Buồn: kể cả là ns đùa 11/27/2014 11:59:58 PM
  • Jea...student: v là e ko dong ý ha 11/28/2014 12:00:04 AM
  • Jea...student: sad 11/28/2014 12:00:07 AM
  • Cát Buồn: vs e từ đó rất thiêng liêng 11/28/2014 12:00:11 AM
  • Cát Buồn: thế nên 11/28/2014 12:00:55 AM
  • Cát Buồn: dù rất muốn, nhưng 11/28/2014 12:01:10 AM
  • Cát Buồn: sorry 11/28/2014 12:01:25 AM
  • Cát Buồn: are we friend? ok? 11/28/2014 12:02:11 AM
  • ~Kezo~: crying 11/28/2014 12:02:53 AM
  • Jea...student: khỏi bạn luôn di e 11/28/2014 12:03:03 AM
  • Jea...student: e có the đi ngủ 11/28/2014 12:03:18 AM
  • Cát Buồn: phũ ghê ha 11/28/2014 12:03:44 AM
  • Cát Buồn: e đi ngủ đây 11/28/2014 12:04:11 AM
  • ~Kezo~: wave 11/28/2014 12:04:16 AM
  • Cát Buồn: jea nè, e sẽ thuyết phục đc a làm bạn e, tin ko 11/28/2014 12:04:31 AM
  • Cát Buồn: vì mn trong htn vốn là bạn mà, phải ko nào 11/28/2014 12:04:49 AM
  • Cát Buồn: tongue 11/28/2014 12:04:55 AM
  • Jea...student: ko bao h 11/28/2014 12:04:57 AM
  • Cát Buồn: pi2 11/28/2014 12:04:57 AM
  • Cát Buồn: jea, cứ chờ xem 11/28/2014 12:05:09 AM
  • Cát Buồn: hahahahahaha 11/28/2014 12:05:34 AM
  • Jea...student: mồm cười 11/28/2014 12:05:51 AM
  • tuanthanh311297: dont_tell_anyone 11/28/2014 12:05:53 AM
  • Jea...student: mà ngủ rolling_on_the_floor... 11/28/2014 12:06:13 AM
  • Jea...student: ngủ nha may dua 11/28/2014 12:12:03 AM
  • Còii: a ngủ đi 11/28/2014 12:12:16 AM
  • tuanthanh311297: ngủ đây 11/28/2014 12:13:22 AM
  • tuanthanh311297: wave 11/28/2014 12:13:35 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ BQT
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Chuyên Cơ Cuối Cùng
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon98
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • giola_2503
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Angel
  • devilphuong96
  • Cát Buồn
  • tqmaries34
  • ankhatruongnguyen
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • Lăn tăn
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • dihoklafdihok
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • fan.arsenalfc
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Còii
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • kto138
  • Sỏi Bự
  • teengirl_hn1998
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • ★.★Logarit★.★
  • nhoknana95
  • hoctainha
  • langvohue1234
  • fglory2912
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • dangtuan251097
  • c.x.sadhp1999
  • huyhoangfan
  • Duy Phong
  • hattuyetmuadong_banggia
  • SNHC
  • mynhi0601
  • hikichbo
  • nguyenxuando
  • ndanh9999999
  • Saori Hara
  • ndanh999
  • hjjj1602
  • xuka.love.nobita.4ever
  • tuongngo28
  • silanmarry
  • kaitokidabcd
  • loan.pham7300
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Trúc Võ
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • aedungcuong
  • minh.phungxuan
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • maihd1980
  • thuphuong.020298
  • xq.qn96