SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC


Trong chuyên đề này, ta sẽ tìm hiểu về 4 bất đẳng thức cổ điển và ứng dụng của chúng trong giải bất đẳng thức lượng giác. Các bất đẳng thức bao gồm:
1. Bất đẳng thức Cauchy (AM – GM)
2. Bất đẳng thức Bunhiacốpxki
3. Bất đẳng thức Jensen
4. Bất đẳng thức Chebyshev

1. Bất đẳng thức Cauchy (AM – GM):
Với mọi số thực không âm ${a_1},{a_2},....,{a_n}$ ta luôn có:
              $\frac{{{a_1} + {a_2} + ... + {a_n}}}{n} \geqslant \sqrt[n]{{{a_1}{a_2}...{a_n}}}$

Ví dụ 1:
Cho A,B,C là 3 đỉnh của 1 tam giác nhọn. CMR:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Lời giải:
Vì $\tan \left( {A + B} \right) =  - \tan C \Leftrightarrow \frac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} =  - \tan C$
$ \Rightarrow \tan A + \tan B + \tan C = \tan A.\tan B.\tan C$
Tam giác ABC nhọn nên tanA, tanB, tanC dương.
Theo Cauchy ta có:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt[3]{{\tan A.\tan B.\tan C}} = 3\sqrt[3]{{\tan A + \tan B + \tan C}}$
            $ \Rightarrow {\left( {\tan A + \tan B + \tan C} \right)^2} \geqslant 27\left( {\tan A + \tan B + \tan C} \right)$
    $ \Rightarrow \tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Đẳng thức xảy ra$ \Leftrightarrow A = B = C \Leftrightarrow \Delta ABC$đều.

Ví dụ 2 :
Cho $\Delta ABC$ nhọn. CMR: $\cot A + \cot B + \cot C \geqslant \sqrt 3 $
Lời giải:
Ta luôn có:
         $\begin{array}
  \cot \left( {A + B} \right) =  - \cot C  \\
   \Leftrightarrow \frac{{\cot A.\cot B - 1}}{{\cot A + \cot B}} =  - \cot C  \\
   \Leftrightarrow \cot A.\cot B + \cot B.\cot C + \cot C.\cot A = 1  \\
\end{array} $
Khi đó:
         ${\left( {\cot A - \cot B} \right)^2} + {\left( {\cot B - \cot C} \right)^2} + {\left( {\cot C - \cot A} \right)^2} \geqslant 0$
    $ \Leftrightarrow {\left( {\cot A + \cot B + \cot C} \right)^2} \geqslant 3\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right) = 3$
    $ \Rightarrow \cot A + \cot B + \cot C \geqslant \sqrt 3 $
Dấu bằng xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ nhọn ta  có:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} \\
                           \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$
Lời giải:
Ta có:  $\frac{{\cos A}}{{2\cos \frac{A}{2}}} = \sin \frac{A}{2}\cot \frac{A}{2}$
$ \Rightarrow \frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} = \left( {\sin \frac{A}{2}\sin \frac{B}{2}} \right)\left( {\frac{3}{4}\cot A\cot B} \right)$
Theo Cauchy:
$\frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} \leqslant {\left( {\frac{{\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B}}{2}} \right)^2}$
$ \Rightarrow \sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B} \right)$
Tương tự ta có:
$\sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{B}{2}\sin \frac{C}{2} + \frac{3}{4}\cot B\cot C} \right)$
$S = pr \Rightarrow \frac{8}{3}{\left( {\frac{S}{{2r}}} \right)^2} = \frac{{{{(a + b + c)}^2}}}{6}$
Cộng theo vế ta được:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} $
$ \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} \\                          + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right)$
$ = \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$    $ \Rightarrow $ Đpcm.

2. Bất đẳng thức Bunhiacốpxki:
Với 2 bộ số ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$ ta luôn có:
             ${\left( {{a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n}} \right)^2} \leqslant \left( {{a_1}^2 + {a_2}^2 + ... + {a_n}^2} \right)\left( {{b_1}^2 + {b_2}^2 + ... + {b_n}^2} \right)$
Nhận xét:
-Nếu như với bất đẳng thức Cauchy, ta luôn phải nhớ điều kiện của các biến là phải không âm thì đối với bất đẳng thức Bunhiacốpxki, ta có thể áp dụng cho các biến là số thực.
-Bất đẳng thức Cauchy và Bunhiacốpxki là 2 bất đẳng thức tỏ ra rất hiệu quả khi dùng để chứng minh các bất đẳng thức lượng giác. Ta sẽ xét các ví dụ sau:

Ví dụ 1:
CMR với mọi $a,b,\alpha $ ta có:
$\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$  
Lời giải:
Ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) = {\sin ^2}\alpha  + \left( {a + b} \right)\sin \alpha \cos \alpha  + ab{\cos ^2}\alpha $
            $ = \frac{{1 - \cos 2\alpha }}{2} + \frac{{\left( {a + b} \right)}}{2}\sin 2\alpha  + ab\frac{{1 + \cos 2\alpha }}{2}$
            $ = \frac{1}{2}\left( {1 + ab + \left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha } \right)$    (1)
Theo Bunhiacốpxki ta có:
        $A\sin x + B\cos x \leqslant \sqrt {{A^2} + {B^2}} $       (2)
Áp dụng (2) ta có:
        $\left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha  \leqslant \sqrt {{{\left( {a + b} \right)}^2} + {{\left( {ab - 1} \right)}^2}}  = \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} $       (3)
Thay (3) vào (1) ta được:
        $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant \frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right)$     (4)
Ta chứng minh bất đẳng thức sau đây đúng với mọi a,b:
        $\frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$     (5)
Thật vậy:
         (5)$ \Leftrightarrow \frac{1}{2} + \frac{{ab}}{2} + \frac{1}{2}\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant 1 + \frac{{{a^2} + {b^2}}}{4} + \frac{{ab}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{{a^2} + {b^2} + 2}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{\left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right)}}{2}$       (6)
Theo Cauchy thì (6) hiển nhiên đúng$ \Rightarrow $ (5) đúng với mọi a,b.
Từ (1) và (5) : với mọi $a,b,\alpha $ ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$
Đẳng thức xảy ra khi ở (1) và (6) dấu bằng đồng thời xảy ra
$ \Leftrightarrow \left\{ \begin{array}
  {a^2} = {b^2}  \\
  \frac{{a + b}}{{\sin 2\alpha }} = \frac{{ab - 1}}{{\cos 2\alpha }}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \tan \alpha  = \frac{{a + b}}{{ab - 1}}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \alpha  = \frac{1}{2}\arctan \frac{{a + b}}{{ab - 1}} + k\frac{\pi }{2}  \\
\end{array}  \right.$ 

Ví dụ 2:
CMR với mọi $\Delta ABC$ ta có:
   $\sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}} $   
với x,y,z là khoảng cách từ điểm M bất kì nằm bên trong $\Delta ABC$ tới 3 cạnh AB, BC, CA của tam giác.
Lời giải:
Ta có:
         $\begin{array}
  {S_{ABC}} = {S_{MAB}} + {S_{MBC}} + {S_{MCA}}  \\
   \Leftrightarrow \frac{{{S_{MAB}}}}{{{S_{ABC}}}} + \frac{{{S_{MBC}}}}{{{S_{ABC}}}} + \frac{{{S_{MCA}}}}{{{S_{ABC}}}} = 1  \\
   \Leftrightarrow \frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}} = 1  \\
\end{array} $
$ \Rightarrow {h_a} + {h_b} + {h_c} = \left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}}} \right)$
Theo Bunhiacốpxki thì:
$\sqrt x  + \sqrt y  + \sqrt z  = \sqrt {{h_a}} \frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \sqrt {{h_b}} \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \sqrt {{h_c}} \frac{{\sqrt z }}{{\sqrt {{h_c}} }} \\
                               \leqslant \sqrt {\left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \frac{{\sqrt z }}{{\sqrt {{h_c}} }}} \right)}  = \sqrt {{h_a} + {h_b} + {h_c}} $
mà $S = \frac{1}{2}a{h_a} = \frac{1}{2}ab\sin C \Rightarrow {h_a} = b\sin C$, ${h_b} = c\sin A$, ${h_c} = a\sin B$
$ \Rightarrow \sqrt {{h_a} + {h_b} + {h_c}}  = \sqrt {\left( {a\sin B + b\sin C + c\sin A} \right)}  = \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}} $
$ \Rightarrow \sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}}  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}}  \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\left\{ \begin{array}
  a = b = c  \\
  x = y = z  \\
\end{array}  \right. \Leftrightarrow \Delta ABC$đều và M là tâm đường tròn nội tiếp$\Delta ABC$.

3. Bất đẳng thức Jensen:
Cho $f:{R^ + } \to R$ thỏa mãn $f(x) + f(y) \geqslant 2f\left( {\frac{{x + y}}{2}} \right)$  $\forall x,y \in {R^ + }$. Khi đó với mọi  ${x_1},{x_2},....,{x_n} \in {R^ + }$ ta có bất đẳng thức sau:
                          $f({x_1}) + f({x_2}) + ...... + f({x_n}) \geqslant nf\left( {\frac{{{x_1} + {x_2} + ... + {x_n}}}{n}} \right)$

-Bất đẳng thức Jensen thật sự là một công cụ chuyên dùng cho chứng minh các bất đẳng thức lượng giác. Tuy không phải là một bất đẳng thức chặt nhưng nếu thấy có những dấu hiệu của BĐT Jensen, chúng ta nên dùng ngay.
 
Ví dụ 1:
Chứng minh rằng với mọi$\Delta ABC$ ta có
                      $\sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}$
Lời giải:
Xét $f(x) = \sin x$ với $x \in \left( {0,\pi } \right)$ $ \Rightarrow f(x)$ là hàm lồi. Theo Jensen ta có:
$f(A) + f(B) + f(C) \leqslant 3f\left( {\frac{{A + B + C}}{3}} \right) = 3\sin \frac{\pi }{3} = \frac{{3\sqrt 3 }}{2} \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$đều ta có:
           $\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3 $
Lời giải:
Xét $f(x) = \tan x$ với$x \in \left( {0,\frac{\pi }{2}} \right)$
$\begin{array}
(1) \Leftrightarrow {a^2}({a^2} - bc) + {b^2}({b^2} - ca) + {c^2}({c^2} - ab) \geqslant 0  \\
\Leftrightarrow \left[ {{a^2} + {{(b + c)}^2}} \right]{(b - c)^2} + \left[ {{b^2} + {{(c + a)}^2}} \right]{(c - a)^2} + \left[ {{c^2} + {{(a + b)}^2}} \right]{(a - b)^2} \geqslant 0  \\
\end{array} $ là hàm lồi. Theo Jensen ta có:
$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right) = 3\sin \frac{\pi }{6} = \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ta có:
$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} + \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \frac{3}{2} + \sqrt 3 $
Lời giải:
Xét $f(x) = \sin x + \tan x$ với $ \Rightarrow $là hàm lồi. Theo Jensen ta có:

$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right)$$ = 3\left( {\tan \frac{\pi }{6} + \sin \frac{\pi }{6}} \right) = \frac{3}{2} + \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

4. Bất đẳng thức Chebyshev:
Với 2 dãy số thực đơn điệu cùng chiều ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$  ta có:
             ${a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n} \geqslant \frac{1}{n}\left( {{a_1} + {a_2} + ... + {a_n}} \right)\left( {{b_1} + {b_2} + ... + {b_n}} \right)$

Ví dụ 1:
Chứng minh rằng với mọi $\Delta ABC$ ta có
               $\frac{{aA + bB + cC}}{{a + b + c}} \geqslant \frac{\pi }{3}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c \Leftrightarrow A \leqslant B \leqslant C$

Theo Chebyshev thì
$\left( {\frac{{a + b + c}}{3}} \right)\left( {\frac{{A + B + C}}{3}} \right) \leqslant \frac{{aA + bB + cC}}{3}$
$ \Rightarrow \frac{{aA + bB + cC}}{3} \geqslant \frac{{A + B + C}}{3} = \frac{\pi }{3}$
Đẳng thức xảy ra khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$ ta có
              $\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} \leqslant \frac{\tan A\tan B\tan C}{3}$
Lời giải:
Không mất tổng quát giả sử$A \geqslant B \geqslant C$
               $ \Rightarrow \left\{ \begin{array}
  \tan A \geqslant \tan B \geqslant \tan C  \\
  \cos A \leqslant \cos B \leqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$ \Leftrightarrow \frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \leqslant \frac{{\tan A + \tan B + \tan C}}{3}$
Mà $\tan A + \tan B + \tan C = \tan A\tan B\tan C$$ \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ ta có
$2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c$
                    $ \Rightarrow \left\{ \begin{array}
  \sin A \leqslant \sin B \leqslant \sin C  \\
  \cos A \geqslant \cos B \geqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$\left( {\frac{{\sin A + \sin B + \sin C}}{3}} \right)\left( {\frac{{\cos A + \cos B + \cos C}}{3}} \right) \geqslant \frac{{\sin A\cos A + \sin B\cos B + \sin C\cos C}}{3}$
$ \Leftrightarrow 2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}} \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

BÀI TẬP:
Bài 1.

CMR với mọi tam giác ABC ta có:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
Theo BĐT Cô-si  ta có:
$\frac{{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}}{3} \geqslant \sqrt[3]{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Mặt khác:
$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} = \frac{{c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{{\frac{1}{4}(\sin A + \sin B + \sin C)}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}} = \frac{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2} + \sin \frac{B}{2}c{\text{os}}\frac{B}{2} + \sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}{{2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
                 $ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Suy ra:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right)$
$ \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}\sin \frac{A}{2}\sin \frac{C}{2}\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}}$  (1)
Mà ta cũng có:
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} \geqslant 3\sqrt 3 $
$ \Rightarrow \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)$
Từ (1),(2) :
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
$ \Rightarrow $ đpcm.

Bài 2.
Cho $\Delta ABC$ nhọn .CMR:
              $\left( {\cos A + \cos B + \cos C} \right)\left( {\operatorname{t} a{\text{nA}} + \tan B + \tan C} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
 Vì $\Delta ABC$ nhọn nên $\cos A,\cos B,\cos C,\operatorname{t} {\text{anA}},\tan B,\tan C$ đều dương.
Theo AM-GM ta có:
$\begin{array}
  \frac{{\cos A + \cos B + \cos C}}{3} \geqslant \sqrt[3]{{\cos A\cos B\cos C}}  \\
  \operatorname{t} a{\text{nA}} + \tan B + \tan C = \operatorname{t} a{\text{nA}}\tan B\tan C = \frac{{\sin A\sin B\sin C}}{{\cos A\cos B\cos C}}  \\
\end{array} $
$ = \frac{{\frac{1}{4}(\sin 2A + \sin 2B + \sin 2C)}}{{\cos A\cos B\cos C}} = \frac{{\sin A\cos A + \sin B\cos b + \sin C\cos C}}{{2\cos A\cos B\cos C}}$
$ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{2\cos A\cos B\cos C}}$
Suy ra:
$\begin{array}
  (\cos A + \cos B + \cos C)(\operatorname{t} a{\text{nA}}\tan B\tan C)  \\
   \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\cos A\cos B\cos C\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{\cos A\cos B\cos C}}  \\
   = \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}}(1)  \\
\end{array} $
Mặt khác:
$\begin{array}
  \tan {\text{A}}\tan B\tan C \geqslant 3\sqrt 3   \\
   \Rightarrow \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)  \\
\end{array} $
Từ (1),(2) suy ra:
$(\cos A + \cos B + \cos C)(\tan {\text{A}}\tan B\tan C) \geqslant \frac{{9\sqrt 3 }}{2}$  $ \Rightarrow $ đpcm.

Bài 4.
Cho tam giác ABC bất kì .CMR:
$\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} \geqslant 4 - \frac{{2r}}{R}$
Lời giải:
Ta có S=$\frac{{abc}}{{4R}} = pr = \sqrt {p(p - a)(p - b)(p - c)} $
$\begin{array}
   \Rightarrow \frac{{2r}}{R} = \frac{{8{S^2}}}{{pabc}} = \frac{{{a^2}b + a{b^2} + {b^2}c + b{c^2} + {c^2}a + c{a^2} - {a^3} - {b^3} - {c^3} - 2abc}}{{abc}}  \\
   \Rightarrow 4 - \frac{{2r}}{R} = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + 6 - (\frac{a}{b} + \frac{b}{a} + \frac{b}{c} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c}) \leqslant \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}  \\
\end{array} $
Suy ra đpcm

Bài 5.
Cho tam tam giác ABC.CMR
$(\frac{a}{{\cos A}} + \frac{b}{{\cos B}} - c)(\frac{b}{{\cos b}} + \frac{c}{{\cos C}} - a)(\frac{c}{{\cos C}} + \frac{a}{{\cos A}} - b) \geqslant 27abc$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với: $\begin{array}
  (\frac{{\sin C}}{{\cos A\cos B}} - \sin C)(\frac{{\sin A}}{{\cos B\cos C}} - \sin A)(\frac{{\sin B}}{{\cos C\cos A}} - \sin B) \geqslant 27\sin A\sin B\sin C  \\
   \Leftrightarrow \frac{{1 - \cos A\cos B}}{{\cos A\cos B}}.\frac{{1 - \cos B\cos C}}{{\cos B\cos C}}.\frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant 27  \\
\end{array} $
Đặt x = tanA/2,y = tanB/2,z = tanC/2, khi đó ta có
$\cos A = \frac{{1 - {x^2}}}{{1 + {x^2}}},\cos B = \frac{{1 - {y^2}}}{{1 + {y^2}}},\cos C = \frac{{1 - {z^2}}}{{1 + {z^2}}}$
Và $\tan A = \frac{{2x}}{{1 - {x^2}}},\tan B = \frac{{2y}}{{1 - {y^2}}},\tan C = \frac{{2z}}{{1 - {z^2}}}$
Khi đó :$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} = \frac{{2({x^2} + {y^2})}}{{(1 - {x^2})(1 - {y^2})}}$ mặt khác :${x^2} + {y^2} \geqslant 2xy$ nên:
$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} \geqslant \frac{{2x}}{{1 - {x^2}}}.\frac{{2y}}{{1 - {y^2}}} = \tan A\tan B$    (1)
Tương tự ta có:
$\begin{array}
  \frac{{1 - \cos B\cos C}}{{\cos B\cos C}} \geqslant \tan B\tan C  \\
  \frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant \tan C\tan A  \\
\end{array} $
Nhân vế theo vế (1) (2) và (3) ta được đpcm

hay quá!! ^_^ –  Confusion 09-04-16 01:03 PM
Chat chit và chém gió
  • cos^2(T): e lướn tuổi hơn cj 9/20/2017 7:20:06 AM
  • Kirito: V THÈN tOKKA 2K1 9/20/2017 7:20:13 AM
  • ❦ Mưa ❦: hi ô T 9/20/2017 7:20:21 AM
  • cos^2(T): laughing e lớn hơn đó na 9/20/2017 7:20:22 AM
  • ❦ Mưa ❦: ko hk à? 9/20/2017 7:20:24 AM
  • DNA: laughing đạt nhận thua tui đi 9/20/2017 7:20:28 AM
  • Tohka: hi to 9/20/2017 7:20:28 AM
  • Kirito: đang hk 9/20/2017 7:20:31 AM
  • Kirito: vừa bị mẹ chửi xong 9/20/2017 7:20:44 AM
  • Tohka: rồi rồi tui thua 9/20/2017 7:20:49 AM
  • Tohka: sigh 9/20/2017 7:21:02 AM
  • cos^2(T): aT nghe sướng tai ko ? 9/20/2017 7:21:06 AM
  • DNA: rolling_on_the_floor hí hí có ng con trai đã thua dưới tay tui 9/20/2017 7:21:12 AM
  • Kirito: Chỉ chơi có 1 trận thôi làm gì mà nóng kinh 9/20/2017 7:21:19 AM
  • Kirito: -_- 9/20/2017 7:21:22 AM
  • DNA: laughing a 9/20/2017 7:21:23 AM
  • cos^2(T): cj trag 9/20/2017 7:21:34 AM
  • cos^2(T): cj hok e nì 9/20/2017 7:21:36 AM
  • Tohka: laughing 9/20/2017 7:21:38 AM
  • cos^2(T): nhìu a thua e lắm big_grin 9/20/2017 7:21:42 AM
  • DNA: laughing A tuấn chắc sướng lắm nhỉ 9/20/2017 7:21:45 AM
  • cos^2(T): nể nhất aP - thua e miết mà cx chịu 9/20/2017 7:21:58 AM
  • Kirito: ờ định tịch thu cái láp 9/20/2017 7:22:04 AM
  • DNA: thumbs_up chấp nhận thua dưới tay cn gái 9/20/2017 7:22:14 AM
  • Tohka: thôi thế là hết xem anime rùi to ơi 9/20/2017 7:22:29 AM
  • cos^2(T): laughing 9/20/2017 7:22:30 AM
  • Kirito: Nhưng a lỳ chày cối nốt cho khỏi Afk nên bị chửi sml 9/20/2017 7:22:31 AM
  • ❦ Mưa ❦: thôi, pp mn 9/20/2017 7:22:36 AM
  • DNA: rolling_on_the_floor trc e cũng bị thu rồi xog mẹ lại trả 9/20/2017 7:22:37 AM
  • cos^2(T): bb cj2 9/20/2017 7:22:40 AM
  • ❦ Mưa ❦: cj đi chwoi đây 9/20/2017 7:22:42 AM
  • cos^2(T): sướng ! 9/20/2017 7:22:58 AM
  • DNA: pp cj gái 9/20/2017 7:23:00 AM
  • ❦ Mưa ❦: cj đi kêu vk e qua 9/20/2017 7:23:23 AM
  • ❦ Mưa ❦: big_grin 9/20/2017 7:23:26 AM
  • DNA: laughing vk e là ai 9/20/2017 7:23:34 AM
  • Tohka: applause 9/20/2017 7:23:52 AM
  • ❦ Mưa ❦: lại off 9/20/2017 7:24:13 AM
  • DNA: h tui sẽ gọi đạt là đệ nhá 9/20/2017 7:24:14 AM
  • DNA: laughing thua tui nên sẽ là đẹ của tui 9/20/2017 7:24:27 AM
  • DNA: đệ 9/20/2017 7:24:31 AM
  • Tohka: ko có đâu 9/20/2017 7:24:38 AM
  • DNA: thua tui rồi mak 9/20/2017 7:24:47 AM
  • DNA: laughing đệ đạt 9/20/2017 7:24:58 AM
  • cos^2(T): e thấy thương aĐ qá 9/20/2017 7:25:04 AM
  • cos^2(T): mà ko pải 9/20/2017 7:25:08 AM
  • Tohka: kệ đi 9/20/2017 7:25:14 AM
  • cos^2(T): thương nx ai gt nam gặp cj 9/20/2017 7:25:15 AM
  • cos^2(T): :v toàn bj cj nạt @@ 9/20/2017 7:25:26 AM
  • Lê Lê Vy: sad 9/20/2017 7:25:39 AM
  • DNA: laughing h cj sẽ trở lại gt thật sự của cj 9/20/2017 7:25:50 AM
  • DNA: huú cj gái 9/20/2017 7:26:04 AM
  • Tohka: khó hiểu nhỉ 9/20/2017 7:26:10 AM
  • Lê Lê Vy: broken_heart 9/20/2017 7:26:17 AM
  • Lê Lê Vy: ck nạ 9/20/2017 7:26:23 AM
  • Lê Lê Vy: v nì 9/20/2017 7:26:25 AM
  • cos^2(T): cạn lời 9/20/2017 7:26:26 AM
  • Lê Lê Vy: vk 9/20/2017 7:26:28 AM
  • Tohka: ai vậy 9/20/2017 7:26:39 AM
  • cos^2(T): vk cj Trag 9/20/2017 7:26:46 AM
  • DNA: chào vk 9/20/2017 7:26:48 AM
  • DNA: laughing đạt đi kiếm vk đi đệ 9/20/2017 7:26:59 AM
  • cos^2(T): cái htn lắm cặp thế nờ rolling_on_the_floor 9/20/2017 7:27:05 AM
  • Tohka: đệ cái j 9/20/2017 7:27:18 AM
  • DNA: e gái có mạnh rồi mak 9/20/2017 7:27:22 AM
  • DNA: laughing đệ tui mak 9/20/2017 7:27:30 AM
  • cos^2(T): HẢAAAAAAAAAAAA 9/20/2017 7:27:39 AM
  • Tohka: not_worthy 9/20/2017 7:27:41 AM
  • cos^2(T): aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 9/20/2017 7:27:45 AM
  • cos^2(T): xl 9/20/2017 7:27:50 AM
  • Lê Lê Vy: laughing 9/20/2017 7:27:51 AM
  • cos^2(T): e đg thử phím :v 9/20/2017 7:27:58 AM
  • Lê Lê Vy: chị dâu chào đệ đệ 9/20/2017 7:28:05 AM
  • Lê Lê Vy: big_grin 9/20/2017 7:28:07 AM
  • Tohka: ô cos cũng có rùi ak big_grin 9/20/2017 7:28:11 AM
  • DNA: laughing 9/20/2017 7:28:16 AM
  • cos^2(T): e có ? 9/20/2017 7:28:17 AM
  • cos^2(T): nấu nầu nầu 9/20/2017 7:28:20 AM
  • DNA: laughing ai cũng có rồi teuwf đệ thoy 9/20/2017 7:28:27 AM
  • DNA: trừ 9/20/2017 7:28:30 AM
  • cos^2(T): đùa 9/20/2017 7:28:34 AM
  • cos^2(T): e đã có đâu 9/20/2017 7:28:37 AM
  • DNA: rolling_on_the_floor đệ cứ đi kiếm em nào đi 9/20/2017 7:28:43 AM
  • Tohka: ak mà cho a hỏi cos ơi lệ là nam hay nữ vậy 9/20/2017 7:28:59 AM
  • DNA: laughing mạnh tán e rồi mak 9/20/2017 7:29:03 AM
  • Lê Lê Vy: laughing 9/20/2017 7:29:07 AM
  • Lê Lê Vy: cos là trai 9/20/2017 7:29:14 AM
  • DNA: laughing là boy đệ ơi 9/20/2017 7:29:18 AM
  • cos^2(T): Nữ chính gốc chứ ko lai như cj trag a ạ 9/20/2017 7:29:22 AM
  • Tohka:9/20/2017 7:29:38 AM
  • DNA: laughing cj cũng là nữ chính gốc mak 9/20/2017 7:29:43 AM
  • cos^2(T): straight_face e girl chính gốc nàk 9/20/2017 7:29:43 AM
  • Tohka: doh 9/20/2017 7:29:44 AM
  • cos^2(T): đừng đổ oan 9/20/2017 7:29:46 AM
  • DNA: laughing cj là thùy mị nết na đó 9/20/2017 7:30:06 AM
  • cos^2(T): e thấy câu cj ns 9/20/2017 7:30:21 AM
  • cos^2(T): sai sai sao á 9/20/2017 7:30:24 AM
  • Tohka: ko phải sai sai mà cực kì sai 9/20/2017 7:30:39 AM
  • cos^2(T): thumbs_up à vâng đúng r 9/20/2017 7:30:47 AM
  • DNA: cj là ng thùy mị nết na tư dung tốt đẹp vạy maklaughing 9/20/2017 7:30:54 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • Lỗi
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • Thìn
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • †VPB†
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Lục Diệp Tử
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • DNA
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • Hoàng Yến
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ⊰๖ۣۜNgốc๖ۣۜ ⊱
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • White
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Lành
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • Khờ iêm Khiêm
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • -
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • sin^2 (B)
  • cụ nhỏ
  • Update
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Tuyết Linh
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tohka
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • trinh2005
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • Cửu Thiên Vũ
  • net.sonicz
  • Huyền Kute
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • cos^2(T)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • Kirito
  • Băng
  • Gin
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • ♫ ♥ ♫
  • benganxd2509
  • pnt2912003
  • ❦ Mưa ❦
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • sakuramiyukikawaii2006
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • namikaze
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam