TỔ HỢP, CHỈNH HỢP - CÁC PHƯƠNG PHÁP TÍNH TỔNG


I. LÝ THUYẾT
Chỉnh hợp:

Cho tập hợp $A$ gồm $n$ phần tử; $n$$ \geqslant $1. Một chỉnh hợp chập $k$ các phần tử của $A$ là một cách sắp xếp $k$ phần tử khác nhau của $A$; $1 \leqslant k \leqslant n;\,\,k \in \mathbb{N}$.
Số các chỉnh hợp chập $k$ của $n$ phần tử: $A_n^k = \frac{{n!}}{{(n - k)!}}$
Hoán vị:
Cho tập hợp $A$ gồm $n$ phần tử; $n > 0$. Một hoán vị $n$ phần tử của $A$ là một chỉnh hợp chập $n$ các phần tử của $A$ (Hay một cách sắp xếp thứ tự các $n$ phần tử của $A$).
Số các hoán vị $n$ phần tử của $A$: ${P_n} = A_n^n = n!$
Tổ hợp:
Cho tập hợp $A$ gồm $n$ phần tử; $n > 0$. Một tổ hợp chập $k$ các phần tử của $A$ là một tập hợp con của $A$ có $k$ phần tử ; $0 \leqslant k \leqslant n;\,\,k \in \mathbb{N}$.
Số các tổ hợp chập $k$ của $n$ phần tử: $C_n^k = \frac{{n!}}{{k!.(n - k)!}}$

Các công thức quan trọng của $P_n, C_n^k, A_n^k$
•    $C_n^k = \frac{{A_n^k}}{{{P_k}}}$
•    $C_n^k = C_n^{n - k}$
•    $C_n^k = C_{n - 1}^k + C_{n - 1}^{k - 1}$
•    $k.C_n^k = n.C_{n - 1}^{k - 1}\quad (1 \leqslant k \leqslant n;k \in \mathbb{N};n \in N;n > 1)$       
•    $k.(k - 1).C_n^k = n.(n - 1).C_{n - 2}^{k - 2};\quad \forall k;n \in \mathbb{N};2 \leqslant k \leqslant n$
•    $k.(k - 1)(k - 2).C_n^k = n.(n - 1)(n - 2).C_{n - 3}^{k - 3};\quad \forall k;n \in \mathbb{N};3 \leqslant k \leqslant n$
•    $\frac{1}{{k + 1}}.C_n^k = \frac{1}{{n + 1}}.C_{n + 1}^{k + 1}\quad (\forall k \in \mathbb{N};0 \leqslant k \leqslant n;n \in {\mathbb{N}^*}$    
Nhị thức Newton
${(a + b)^n} = C_n^0.{a^n} + C_n^1.{a^{n - 1}}.b + C_n^2.{a^{n - 2}}.{b^2} + ... $
                                        $+ C_n^k.{a^{n - k}}.{b^k} + ... + C_n^n.{b^n}$$ = \sum\limits_{k = 0}^n {C_n^k.{a^{n - k}}.{b^k}} $$(\forall n \in {\mathbb{N}^*})$

Ta cũng có thể khai triển:
${(a + b)^n} = C_n^0.{b^n} + C_n^1.{b^{n - 1}}.a + C_n^2.{b^{n - 2}}.{a^2} + ... $
                                       $+ C_n^k.{b^{n - k}}.{a^k} + ... + C_n^n.{a^n}$$ = \sum\limits_{k = 0}^n {C_n^k.{a^k}.{b^{n - k}}} $ $(\forall n \in {\mathbb{N}^*})$
Một số đẳng thức rút ra từ nhị thức Newton:
$C_n^0 + C_n^1 + ..... + C_n^k + ..... + C_n^n = {2^n}\quad \forall n \in {\mathbb{N}^*}$
$C_n^0 - C_n^1 + ..... + {( - 1)^k}.C_n^k + ..... + {( - 1)^n}.C_n^n = \quad \forall n \in {\mathbb{N}^*}$
${(1 + x)^{2n}} = \sum\limits_{k = 0}^{2n} {{x^k}.C_{2n}^k} $;     ${(1 - x)^{2n}} = \sum\limits_{k = 0}^{2n} {{{( - 1)}^k}{x^k}.C_{2n}^k} $
${(1 + x)^{2n + 1}} = \sum\limits_{k = 0}^{2n} {{x^k}.C_{2n + 1}^k} $; ${(1 - x)^{2n + 1}} = \sum\limits_{k = 0}^{2n} {{{( - 1)}^k}{x^k}.C_{2n + 1}^k} $

II. BÀI TẬP
Phương pháp:

1.  Quan sát biểu thức cần tính để đưa ra nhị thức Newton thích hợp.
2.  Áp dụng các biến đổi tổ hợp, chỉnh hợp quen thuộc
3.  Xác định công thức tổng quát và chứng minh
4.  Sử dụng công cụ đạo hàm hoặc tích phân

Bài 1:
Rút gọn:  ${\operatorname{S} _k} = C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {( - 1)^k}C_n^k;\quad 0 \leqslant k \leqslant n;\,\,\,\,k \in \mathbb{N};n \in {\mathbb{N}^*}$
Hướng dẫn:
Nếu $k<n$ thì ta có
${\operatorname{S} _k} = C_n^0 - (C_{n - 1}^0 + C_{n - 1}^1) + (C_{n - 1}^1 + C_{n - 1}^2) - (C_{n - 1}^2 + C_{n - 1}^3) + ... $
                               $+ {( - 1)^k}(C_{n - 1}^{k - 1} + C_{n - 1}^k);0 \leqslant k \leqslant n;\,\,\,\,k \in \mathbb{N};n \in {\mathbb{N}^*}$
Rút gọn suy ra: ${S_k} = {( - 1)^k}.C_{n - 1}^k$
Nếu $k = n$ thì ${\operatorname{S} _k} = C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {( - 1)^n}C_n^n = 0$

Bài 2:
Tính S = $C_{4n}^1 + C_{4n}^3 + C_{4n}^4 + .... + C_{4n}^{2n - 1}$
Hướng dẫn:
Áp dụng công thức $C_n^k = C_n^{n - k}$ ta có:
$C_{4n}^1 = C_{4n}^{4n - 1};C_{4n}^3 = C_{4n}^{4n - 3};....;C_{4n}^{2n - 1} = C_{4n}^{2n + 1}$
Vì vậy $S =$ $C_{4n}^{4n - 1} + C_{4n}^{4n - 3} + .... + C_{4n}^{2n + 1}$
Suy ra
$2S = $$C_{4n}^1 + C_{4n}^3 + C_{4n}^4 + .... + C_{4n}^{2n - 1} + C_{4n}^{2n + 1} + ..... + C_{4n}^{4n - 1} = {2^{4n}} - C_{4n}^0 - C_{4n}^{4n}$
 $ \Rightarrow S = {2^{4n - 2}}$

Bài 3: 
Tính các tổng sau:

a. ${S_2} = C_n^0 + 2C_n^1 + 3C_n^2 + ... + (n + 1)C_n^n;\quad n \in \mathbb{N};n > 1$      
b. ${S_3} = C_n^2 + 2C_n^3 + 3C_n^4 + ... + (n - 1)C_n^n;\quad n \in {\mathbb{N}^*};n \geqslant 2$   
c. ${S_4} = n{.2^{n - 1}}.C_n^0 + (n - 1){.2^{n - 2}}.3.C_n^1 + (n - 2){.2^{n - 3}}{.3^2}.C_n^2 + ... + {3^{n - 1}}.C_n^{n - 1};\quad n \in \mathbb{N};n > 1$
d. ${S_5} = {4.5^3}.C_{2009}^0 + {5.5^4}.C_{2009}^1 + ... + {2013.5^{2012}}.C_{2009}^{2009}$
Hướng dẫn:
a.  ${S_2} = C_n^0 + 2C_n^1 + 3C_n^2 + ... + (n + 1)C_n^n;\quad n \in {\mathbb{N}^*}$    
$ \Rightarrow {S_2} = \sum\limits_{k = 0}^n {(k + 1).C_n^k = } \;0.C_n^0 + \sum\limits_{k = 1}^n {k.C_n^k}  + \sum\limits_{k = 0}^n {C_n^k} $
$ \Rightarrow {S_2} = \sum\limits_k^n {n.C_{n - 1}^{k - 1}}  + \sum\limits_{k = 0}^n {C_n^k} $
$\begin{array}
   \Rightarrow {S_2} = n{.2^{n - 1}} + {2^n}  \\
   \Rightarrow {S_2} = (n + 2){.2^{n - 1}};\quad \forall n \in \mathbb{N};n > 1  \\
\end{array} $
b. ${S_3} = C_n^2 + 2C_n^3 + 3C_n^4 + ... + (n - 1)C_n^n;\quad n \in {\mathbb{N}^*};n \geqslant 2$
$ \Rightarrow {S_3} = \sum\limits_{k = 2}^n {(k - 1).C_n^k = } \;\sum\limits_{k = 2}^n {k.C_n^k}  - \sum\limits_{k = 2}^n {C_n^k} $
$ \Rightarrow {S_3} = \;\sum\limits_{k = 1}^n {k.C_n^k}  - C_n^1 - \sum\limits_{k = 0}^n {C_n^k}  + C_n^0 + C_n^1$
$ \Rightarrow {S_3} = \sum\limits_{k = 1}^n {n.C_{n - 1}^{k - 1}}  - C_n^1 - \sum\limits_{k = 0}^n {C_n^k}  + C_n^0 + C_n^1$
$\begin{array}
   \Rightarrow {S_3} = n{.2^{n - 1}} - {2^n} + 1  \\
   \Rightarrow {S_3} = (n - 2){.2^{n - 1}} + 1;\quad \forall n \in \mathbb{N};n \geqslant 2  \\
\end{array} $
c. ${S_4} = n{.2^{n - 1}}.C_n^0 + (n - 1){.2^{n - 2}}.3.C_n^1 + (n - 2){.2^{n - 3}}{.3^2}.C_n^2 + ... + {3^{n - 1}}.C_n^{n - 1};\quad n \in {\mathbb{N}^*}$
$ \Rightarrow {S_4} = \sum\limits_{k = 0}^{n - 1} {(n - k){{.2}^{n - k - 1}}{{.3}^k}.C_n^k = } \;\sum\limits_{k = 0}^{n - 1} {{2^{n - k - 1}}{{.3}^k}.(n - k).C_n^{n - k}} $
$ \Rightarrow {S_4} = \sum\limits_{k = 0}^{n - 1} {{2^{n - k - 1}}{{.3}^k}.n.C_{n - 1}^{n - k - 1}} $
$\begin{array}
   \Rightarrow {S_4} = n({2^{n - 1}}{.3^0}.C_{n - 1}^{n - 1} + {2^{n - 2}}{.3^2}.C_{n - 1}^{n - 2} + ... + {2^0}{.3^{n - 1}}.C_{n - 1}^0)  \\
   \Rightarrow {S_4} = n.{(2 + 3)^{n - 1}}  \\
   \Rightarrow {S_4} = n{.5^{n - 1}};\quad \forall n \in \mathbb{N};n > 1  \\
\end{array} $
d. ${S_5} = {4.5^3}.C_{2009}^0 + {5.5^4}.C_{2009}^1 + ... + {2013.5^{2012}}.C_{2009}^{2009}$
$\begin{array}
   \Rightarrow {S_5} = \sum\limits_{k = 0}^{2009} {(k + 4){{.5}^{k + 3}}.C_{2009}^k}  = \sum\limits_{k = 0}^{2009} {k{{.5}^{k + 3}}.C_{2009}^k}  + \sum\limits_{k = 0}^{2009} {{{4.5}^{k + 3}}.C_{2009}^k}   \\
   \Rightarrow {S_5} = \sum\limits_{k = 0}^{2009} {{5^{k + 3}}.k.C_{2009}^k}  + \sum\limits_{k = 0}^{2009} {{{4.5}^{k + 3}}.C_{2009}^k}   \\
   \Rightarrow {S_5} = {5^{0 + 3}}.0.C_{2009}^0 + \sum\limits_{k = 1}^{2009} {{5^4}{{.5}^{k - 1}}.2009.C_{2008}^{k - 1}}  + \sum\limits_{k = 0}^{2009} {{{4.5}^3}{{.5}^k}.C_{2009}^k}   \\
   \Rightarrow {S_5} = {2009.5^4}.({5^0}C_{2008}^0 + {5^1}C_{2008}^1 + ... + {5^{2008}}C_{2008}^{2008}) +   \\
  \quad \quad \quad \quad  + {4.5^3}.({5^0}C_{2009}^0 + {5^1}C_{2009}^1 + ... + {5^{2009}}C_{2009}^{2009})  \\
   \Rightarrow {S_5} = {2009.5^4}{.6^{2008}} + {4.5^3}{.6^{2009}}  \\
   \Rightarrow {S_5} = {10069.5^3}{.6^{2008}}  \\
\end{array} $

Bài 4:
Tính $S = C_n^0 - 2C_n^1 + 3C_n^2 - ... + {( - 1)^n}.(n + 1)C_n^n;\quad n \in \mathbb{N}$
Hướng dẫn:
Ta sử dụng công cụ đạo hàm:
Xét đa thức $f(x) = x(1+x)^n =$ $C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}};\quad n \in {\mathbb{N}^*}$  $D=R$
Ta có ${f^'}(x) = $$C_n^0 + C_n^1.2x + C_n^23{x^2} + ... + C_n^n.(n + 1){x^n} = {(1 + x)^n} + nx{(1 + x)^{n - 1}}$
$ \Rightarrow {f^'}( - 1) = $$C_n^0 - 2C_n^1 + 3C_n^2 - ... + {( - 1)^n}.(n + 1)C_n^n = {f^'}( - 1) = 0$

Lưu ý: Để tính các tổng
${S_1} = C_n^0 + 2aC_n^1 + 3{a^2}C_n^2 + ... + (n + 1){a^n}C_n^n;\quad $
${S_2} = C_{2n}^0 + 3{a^2}C_{2n}^2 + 5{a^4}C_{2n}^4 + ... + (2n + 1){a^{2n}}C_{2n}^{2n};\quad $
Ta xét đa thức $f(x) = x(1+x)^n$ và chứng tỏ rằng $S_1=f’(a)$;
Ta xét đa thức $g(x) = x(1+x)^{2n}$ và chứng tỏ rằng $2S_2=g’(a)+g’(-a); 2S3=g’(a)-g’(-a)$

Bài 5:
Tính $S = {1^2}C_n^1 + {2^2}C_n^2 + {3^2}C_n^3 + ... + {n^2}C_n^n$.
Hướng dẫn:
Ta sử dụng công cụ đạo hàm:
${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
Đạo hàm 2 vế ta được
$n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}$
Nhân 2 vế với x
$nx{\left( {1 + x} \right)^{n - 1}} = C_n^1x + C_n^2.2{x^2} + ... + C_n^n.n{x^n}$
Đạo hàm 2 vế lần nữa ta được
$n{(1 + x)^{n - 1}} + n(n - 1)x{(1 + x)^{n - 2}} = C_n^1 + C_n^2{2^2}x + ... + C_n^n{n^2}{x^{n - 1}}$
Thế $x = 1$ ta được
$n{.2^{n - 1}} + n(n - 1){2^{n - 2}} = S$
Hay $S = n(n + 1){2^{n - 2}}$

Bài 6:
Tính  ${S_1} = C_n^0 + \frac{1}{2}.C_n^1 + \frac{1}{3}.C_n^2 + ... + \frac{1}{{n + 1}}.C_n^n\quad ;n \in {\mathbb{N}^*}$
Hướng dẫn:
Ta sử dụng công cụ tích phân:
Xét đa thức $f(x) = $${(1 + x)^n} = C_n^0 + x.C_n^1 + {x^2}.C_n^2 + ... + {x^n}.C_n^n\quad \forall x \in \mathbb{R};n \in {\mathbb{N}^*}$
Suy ra:  $\int\limits_0^1 {f(x)dx}  = $$C_n^0 + \frac{1}{2}.C_n^1 + \frac{1}{3}.C_n^2 + ... + \frac{1}{{n + 1}}.C_n^n = {S_1} $
$\Rightarrow {S_1} = \frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{{{2^{n + 1}} - 1}}{{n + 1}}} \right.$

Lưu ý: Để tính các tổng
$S = (b - a)C_n^0 + \frac{{{b^2} - {a^2}}}{2}.C_n^1 + \frac{{{b^3} - {a^3}}}{3}.C_n^2 + ... + \frac{{{b^{n + 1}} - {a^{n + 1}}}}{{n + 1}}.C_n^n\quad ;n \in {\mathbb{N}^*}$
Hãy chứng tỏ rằng $S = $$\int\limits_a^b {f(x)dx} ;\,\,f(x) = {(1 + x)^n}$

Bài 7:
$S = \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n$
Hướng dẫn:
 $\int\limits_0^1 {x{{(1 - x)}^n}dx = \int\limits_0^1 {\left[ {C_o^nx - C_n^1{x^2} + C_n^2{x^3} - ... + C_n^n{x^{n + 1}}} \right]} } dx$
Tính $\int\limits_0^1 {x{{(1 - x)}^n}dx} $. Đặt $u = 1 - x \Rightarrow du =  - dx$, $\left\{ {\begin{array}{*{20}{c}}
  {x = 0 \Rightarrow u = 1} \\
  {x = 1 \Rightarrow u = 0}
\end{array}} \right.$.
$\int\limits_0^1 {x{{(1 - x)}^n}dx}  = \int\limits_0^1 {(1 - u){u^n}du = \left. {\frac{{{u^{n + 1}}}}{{n + 1}}} \right|} _0^1 - \left. {\frac{{{u^{n + 2}}}}{{n + 2}}} \right|_0^1$
$= \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{1}{{(n + 1)(n + 2)}}$
$\begin{array}
  \int\limits_0^1 {\left[ {C_n^0x - C_n^1{x^2} + C_n^2{x^3} - ... + {{( - 1)}^n}C_n^n{x^{n + 1}}} \right]} dx  \\
   = \left. {\left[ {C_n^0\frac{{{x^2}}}{2} - C_n^1\frac{{{x^3}}}{3} + C_n^2\frac{{{x^4}}}{4} - ... + {{( - 1)}^n}C_n^n\frac{{{x^{n + 2}}}}{{n + 2}}} \right]} \right|_0^1  \\
   = \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n  \\
   = S  \\
\end{array} $
Vậy $S = \frac{1}{{(n + 1)(n + 2)}}$

Các phương pháp đạo hàm và tích phân trong tổ hợp sẽ được trình bày chi tiết ở các chuyên đề:

-  Sử dụng công cụ đạo hàm trong giải toán tổ hợp

-  Sử dụng công cụ tích phân trong giải toán tổ hợp

BÀI TẬP TỰ GIẢI:
Bài 1:

Tính tổng
a. ${S_1} = {1.2^0}.C_n^1 + {2.2^1}.C_n^2 + {3.2^2}.C_n^3 + ..... + n{.2^{n - 1}}.C_n^n\quad \forall n \in \mathbb{N};n > 1$
b. ${S_2} = 2.C_{2n + 1}^2 + 4.C_{2n + 1}^4 + ..... + 2n.C_{2n + 1}^{2n}$
c. ${S_3} = 2.C_{2n}^2 + 4.C_{2n}^4 + ..... + 2n.C_{2n}^{2n}$
Bài 2:
Cho $a > 0; $$n \in {\mathbb{N}^*}$. Hãy tính tổng
a. ${S_1} = 1.2.C_{n + 1}^1 + 3.4.{a^2}.C_{n + 1}^2 + ..... + (2n + 1)(2n + 2).{a^{2n}}.C_{n + 1}^{n + 1}$
b. ${S_2} = C_n^0 + 2a.C_n^1 + 3{a^2}.C_n^2 + ..... + (n + 1){a^n}.C_n^n$
c. ${S_3} = C_{2n}^0 + 3{a^2}.C_{2n}^2 + 5{a^4}.C_{2n}^4 + ..... + (2n + 1){a^{2n}}.C_{2n}^{2n}$
d. ${S_4} = 2a.C_{2n}^1 + 4{a^3}.C_{2n}^3 + 6{a^5}.C_{2n}^5 + ..... + 2n.{a^{2n - 1}}.C_{2n}^{2n - 1}$
Bài 3:
Tính $S = \frac{1}{3}C_n^0 + \frac{1}{4}C_n^1 + \frac{1}{5}C_n^2 + ... + \frac{1}{{n + 3}}C_n^n$
Bài 4:
Tính tổng $S = \frac{1}{{n + 1}}C_n^0 - \frac{1}{n}C_n^1 + \frac{1}{{n - 1}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n$
Bài 5:
Tính
$S = {2012.3^{2011}}C_{2012}^0 - {2011.3^{2010}}C_{2012}^1 + {2010.3^{2009}}C_{2012}^2 - ... + 2.3C_{2012}^{2010} - C_{2012}^{2011}$
Bài 6:
Tính tổng
a. ${S_1} = C_n^0 + \frac{1}{2}.C_n^1 + \frac{1}{3}.C_n^2 + ... + \frac{1}{{n + 1}}.C_n^n\quad ;n \in {\mathbb{N}^*}$
b. ${S_2} = \frac{{{2^2}}}{2}.C_n^1 + \frac{{{2^3}}}{3}.C_n^2 + \frac{{{2^4}}}{4}.C_n^3 + ... + \frac{{{2^{n + 1}}}}{{n + 1}}.C_n^n\quad (n \in \mathbb{N};n > 1)$
c. ${S_3} = \frac{1}{2}.C_{2n}^1 + \frac{1}{4}.C_{2n}^3 + \frac{1}{6}.C_{2n}^5 + ... + \frac{1}{{2n}}.C_{2n}^{2n - 1}\quad (n \in \mathbb{N};n > 1)$
d. ${S_4} = 2.C_n^0 + \frac{{{3^2} - 1}}{2}.C_n^1 + \frac{{{3^3} - 1}}{3}.C_n^2 + \frac{{{3^4} - 1}}{4}.C_n^3 + ... + \frac{{{3^{n + 1}} - 1}}{{n + 1}}.C_n^n\quad (n \in {\mathbb{N}^*})$
e. ${S_5} = {2^0}C_n^0 - \frac{{{2^2}}}{2}.C_n^1 + \frac{{{2^3}}}{3}.C_n^2 - \frac{{{2^4}}}{4}.C_n^3 + ... + {( - 1)^n}\frac{{{2^{n + 1}}}}{{n + 1}}.C_n^n\quad (n \in {\mathbb{N}^*})$
f.  ${S_6} = \frac{{b - a}}{1}C_n^0 + \frac{{{b^2} - {a^2}}}{2}.C_n^1 + \frac{{{b^3} - {a^3}}}{3}.C_n^2 + ... + \frac{{{b^{n + 1}} - {a^{n + 1}}}}{{n + 1}}.C_n^n\quad (n \in {\mathbb{N}^*};a;b \in \mathbb{R})$

hay qua.. –  ntdragon9xhn 17-05-13 06:12 PM

Thẻ

Lượt xem

102192
Chat chit và chém gió
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: tùng cút tự nhiên 2/8/2016 10:13:09 PM
  • noivoi_visaothe: c k rảnh 2/8/2016 10:13:19 PM
  • Sầu: big_grinthank kiu HA ml 2/8/2016 10:13:19 PM
  • Sầu: rolling_on_the_flooréo cần tiễn 2/8/2016 10:13:27 PM
  • phuong10: a đi nhá 2/8/2016 10:13:37 PM
  • phuong10: mai gặp 2/8/2016 10:13:51 PM
  • Sầu: wavebig_hugkiss 2/8/2016 10:14:04 PM
  • Sầu: laughingmai gặp 2/8/2016 10:14:12 PM
  • phuong10: ngủ ngon mơ về e nhá 2/8/2016 10:14:23 PM
  • Sầu: @@ 2/8/2016 10:14:28 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: cút đi tùng 2/8/2016 10:14:49 PM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/8/2016 10:14:56 PM
  • ๖ۣۜJinღ๖ۣۜKaido: hA ca 2/8/2016 10:15:00 PM
  • duongthuytrang27: Chúc em gái luôn khỏe mạnh và hạnh phúc big_grin #HƯơng 2/8/2016 10:15:42 PM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/8/2016 10:15:48 PM
  • ๖ۣۜJinღ๖ۣۜKaido: chị trang 2/8/2016 10:15:50 PM
  • ๖ۣۜJinღ๖ۣۜKaido: coi mặt nào 2/8/2016 10:15:53 PM
  • duongthuytrang27: JIN.chúc tất cả những gì tốt đẹp nhất sẽ đến với JIn big_grin 2/8/2016 10:16:12 PM
  • phuong10: hương 2/8/2016 10:16:25 PM
  • phuong10: chúc chị năm ms vui vẻ hạnh phúc 2/8/2016 10:16:51 PM
  • noivoi_visaothe: ukm 2/8/2016 10:17:43 PM
  • noivoi_visaothe: thanks mn 2/8/2016 10:17:52 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: ơi đệ 2/8/2016 10:18:05 PM
  • phuong10: hương nek 2/8/2016 10:18:14 PM
  • ๖ۣۜJinღ๖ۣۜKaido: chúc hương năm ms vui vẻ, hạnh phúc, học giỏi, ngày càng xinh gái 2/8/2016 10:18:18 PM
  • noivoi_visaothe: ukm 2/8/2016 10:18:25 PM
  • noivoi_visaothe: thanks 2/8/2016 10:18:29 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: chúc hương muội muội xinh đẹp hơn 2/8/2016 10:18:33 PM
  • phuong10: tk tùng í 2/8/2016 10:18:37 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: love_struck 2/8/2016 10:18:39 PM
  • ๖ۣۜJinღ๖ۣۜKaido: chúc chị trang ngày càng tươi trẻ, khỏe như tiên, hồn nhiên như thanh niên... 2/8/2016 10:19:01 PM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/8/2016 10:19:08 PM
  • ๖ۣۜJinღ๖ۣۜKaido: thanks 2/8/2016 10:19:10 PM
  • duongthuytrang27: :* 2/8/2016 10:19:26 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: surprise chúc hương k cả thèm bảo j 2/8/2016 10:19:41 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: crying 2/8/2016 10:19:48 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: crying 2/8/2016 10:19:50 PM
  • duongthuytrang27: k thể tin nổi mình già vầy laughing 2/8/2016 10:19:52 PM
  • duongthuytrang27: đến mức Jin phải chúc hồn nhiên như thanh niên laughing 2/8/2016 10:20:05 PM
  • phuong10: c trng 2/8/2016 10:20:07 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: crying 2/8/2016 10:20:26 PM
  • duongthuytrang27: ơi 2/8/2016 10:20:28 PM
  • phuong10: lúc nãy có đứa chúc e 2/8/2016 10:20:32 PM
  • ๖ۣۜJinღ๖ۣۜKaido: rolling_on_the_floor 2/8/2016 10:20:43 PM
  • phuong10: phúc như đông hải thọ tỉ nam sơn 2/8/2016 10:20:52 PM
  • ๖ۣۜJinღ๖ۣۜKaido: HA ca 2/8/2016 10:20:54 PM
  • ๖ۣۜJinღ๖ۣۜKaido: kêu qua face 2/8/2016 10:20:57 PM
  • ๖ۣۜJinღ๖ۣۜKaido: cho coi mặt 2/8/2016 10:21:00 PM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/8/2016 10:21:05 PM
  • ๖ۣۜJinღ๖ۣۜKaido: coi ảnh ca 2/8/2016 10:21:08 PM
  • ๖ۣۜJinღ๖ۣۜKaido: mak chưa thật thực 2/8/2016 10:21:12 PM
  • phuong10: jin 2/8/2016 10:21:21 PM
  • noivoi_visaothe: a ha 2/8/2016 10:21:25 PM
  • duongthuytrang27: laughing 2/8/2016 10:21:26 PM
  • noivoi_visaothe: thanksa 2/8/2016 10:21:31 PM
  • duongthuytrang27: Jin hôm nay chưa được big_grin 2/8/2016 10:21:36 PM
  • duongthuytrang27: lúc nào đc c khác ib cho big_grin 2/8/2016 10:21:44 PM
  • ๖ۣۜJinღ๖ۣۜKaido: dạ 2/8/2016 10:21:49 PM
  • phuong10: đua cho tỉ cái link fb HA coi 2/8/2016 10:21:53 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: ơi đệ 2/8/2016 10:22:18 PM
  • ๖ۣۜJinღ๖ۣۜKaido: ok tỉ 2/8/2016 10:22:37 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: k cho nha jin 2/8/2016 10:22:43 PM
  • ๖ۣۜJinღ๖ۣۜKaido: ơ 2/8/2016 10:22:53 PM
  • ๖ۣۜJinღ๖ۣۜKaido: sao h 2/8/2016 10:23:00 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: mấy thành phần is nguy hiểm lắm 2/8/2016 10:23:16 PM
  • phuong10: HA lp mí rùi 2/8/2016 10:24:09 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: lp 12 thôi 2/8/2016 10:24:19 PM
  • phuong10: ồ e thất lễ 2/8/2016 10:25:00 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: ừ ks 2/8/2016 10:25:10 PM
  • phuong10: e xin lỗi nhá 2/8/2016 10:25:29 PM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/8/2016 10:25:54 PM
  • duongthuytrang27: H.anh đao k chấp đâu laughing 2/8/2016 10:26:11 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: kcj 2/8/2016 10:27:08 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: trang dở 2/8/2016 10:27:11 PM
  • ๖ۣۜJinღ๖ۣۜKaido: ui ui 2/8/2016 10:28:35 PM
  • ๖ۣۜJinღ๖ۣۜKaido: ai qua HTN video chơi ko 2/8/2016 10:28:41 PM
  • ๖ۣۜJinღ๖ۣۜKaido: anh HA có webcam hay laptop ko 2/8/2016 10:29:06 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: k có 2/8/2016 10:29:59 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: có mỗi đt thôi 2/8/2016 10:30:05 PM
  • ๖ۣۜJinღ๖ۣۜKaido: ui 2/8/2016 10:30:14 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: laptop hỏng r phải dùng mt cây 2/8/2016 10:30:20 PM
  • ๖ۣۜJinღ๖ۣۜKaido: thế máy tính ca ko có màn hình ak 2/8/2016 10:30:22 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ:2/8/2016 10:30:38 PM
  • ๖ۣۜJinღ๖ۣۜKaido: máy ảnh chứ 2/8/2016 10:30:42 PM
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ: mt k có màn hình thì dùng j 2/8/2016 10:30:45 PM
  • ๖ۣۜJinღ๖ۣۜKaido:2/8/2016 10:31:10 PM
  • phuong10: jin 2/8/2016 10:31:41 PM
  • phuong10: qua fb tỉ hỏi 2/8/2016 10:31:49 PM
  • ๖ۣۜJinღ๖ۣۜKaido: dạ 2/8/2016 10:31:56 PM
  • Yến Linh: có ai k 2/8/2016 11:07:38 PM
  • ๖ۣۜJinღ๖ۣۜKaido: chị linh 2/8/2016 11:10:15 PM
  • ๖ۣۜJinღ๖ۣۜKaido: qua face 2/8/2016 11:10:17 PM
  • phuong10: có ai ko 2/9/2016 12:13:09 AM
  • Yến Linh:2/9/2016 12:21:52 AM
  • Quỳnh: hihi 2/9/2016 6:30:40 AM
  • phuong10: jin 2/9/2016 9:37:58 AM
  • phuong10: có đó ko' 2/9/2016 9:38:07 AM
  • ๖ۣۜJinღ๖ۣۜKaido:2/9/2016 9:44:25 AM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin có ai còn sống ko 2/9/2016 9:45:20 AM
  • ๖ۣۜJinღ๖ۣۜKaido: big_grin 2/9/2016 10:35:50 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ HTN
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ღKhờღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • Ruanyu Jian
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ***
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • Pino
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • Thần Thoại
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Mặc Phi
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Linh Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღLê Việt Tùngღ(vuacfhatinh)
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • nnk510blc
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • lieunguyen904
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ʚïɞ ๖ۣۜH๖ۣàn๖ۣۜG ๖ۣۜAn๖ۣۜH ʚïɞ
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Chiuu
  • meoconxichum103
  • phamduong1234
  • MiMi
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • ╭⌒╮☆♥Kem♥☆╭⌒╮
  • lephamhieu
  • Sầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • duongthuytrang27
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • duongrooneyhd1985
  • phuong10
  • thanhhuyen218969
  • Yến Linh
  • Chắc ***
  • tclsptk25
  • thuylinhnguyenthptthanhha
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • Minh's
  • kieutrinh181999
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Hỏi thế gian tình là gì ?
  • tam654834
  • tramylethi071
  • shinjadoo
  • bualun000
  • tbao
  • chinh923
  • trangthyhanhp8
  • maivyy
  • quocchanlqd
  • gaquay
  • thotrang
  • nguyenyen1510919311
  • caigihu123
  • nhoxchuabietyeu_lk
  • kientrung9a
  • thuybaekons
  • Tranthihahoe
  • Quỳnh
  • milodatnguyen