SỬ DỤNG CÔNG CỤ TÍCH PHÂN TRONG GIẢI TOÁN TỔ HỢP


GIỚI THIỆU
Nếu trong tổng dãy tổ hợp chứa hệ số là phân số $1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n},...$ ta nghĩ ngay đến việc sử dụng tích phân. Ta tính tích phân trong cả trường hợp chưa khai triển nhị thức Newton lẫn trong trường hợp đã khai triển. Hai kết quả bằng nhau. Sau đó thay $x, a, b$ bằng số phù hợp.

Ta sẽ tìm hiểu về phương pháp cơ bản (dùng tích phân hàm đa thức) và các phương pháp bổ sung:
1: Nhân thêm $x,{x^2},...$
2. Truy hồi tích phân
3. Dựa vào tích phân cho trước

PHẦN 1: PHƯƠNG PHÁP XÉT TÍCH PHÂN HÀM ĐA THỨC

Các đẳng thức tích phân cần nhớ:
 $\int\limits_a^b {{{(1 + x)}^n}} dx = \int\limits_a^b {\left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0x + C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} + ... + C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b$
$\int\limits_a^b {{{(1 - x)}^n}} dx = \int\limits_a^b {\left( {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ { - \frac{{{{(1 - x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0x - C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} - ... + {{\left( { - 1} \right)}^n}C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b$

$\int\limits_a^b {{{(x + 1)}^n}} dx = \int\limits_a^b {\left( {C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^n} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(x + 1)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0\frac{{{x^{n + 1}}}}{{n + 1}} + C_n^1\frac{{{x^n}}}{n} + C_n^2\frac{{{x^{n - 1}}}}{{n - 1}} + ... + C_n^nx} \right]} \right|_a^b$

$\int\limits_a^b {{{(x - 1)}^n}} dx = \int\limits_a^b {\left( {C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {{\left( { - 1} \right)}^n}C_n^n} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(x - 1)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0\frac{{{x^{n + 1}}}}{{n + 1}} - C_n^1\frac{{{x^n}}}{n} + C_n^2\frac{{{x^{n - 1}}}}{{n - 1}} - ... + {{\left( { - 1} \right)}^n}C_n^nx} \right]} \right|_a^b$

Bài 1:
Tính $2C_n^0 + 4C_n^1 + \frac{{26}}{3}C_n^2 + ... + \frac{{{3^{n + 1}} - 1}}{{n + 1}}C_n^n$
Phân tích: tổng không đan dấu, có chứa phân số (dấu hiệu sử dụng tích phân), quan sát số hạng cuối có hệ số $\frac{{{3^{n + 1}} - 1}}{{n + 1}}$, ta biết cận từ 1 đến 3. Sử dụng $\int\limits_1^3 {{{(1 + x)}^n}} dx$.
Giải:
    $\int\limits_1^3 {{{(1 + x)}^n}} dx = \int\limits_1^3 {\left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3 = \left. {\left[ {C_n^0x + C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} + ... + C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3 = \left. {C_n^0x} \right|_1^3 + \left. {C_n^1\frac{{{x^2}}}{2}} \right|_1^3 + \left. {C_n^2\frac{{{x^3}}}{3}} \right|_1^3 + ... + \left. {C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right|_1^3$
$ \Leftrightarrow \frac{{{4^{n + 1}} - {2^{n + 1}}}}{{n + 1}} = 2C_n^0 + 4C_n^1 + \frac{{26}}{3}C_n^2 + ... + \frac{{{3^{n + 1}} - 1}}{{n + 1}}C_n^n$
Vậy $S = \frac{{{4^{n + 1}} - {2^{n + 1}}}}{{n + 1}}$
Lưu ý: khi tính giá trị tích phân có gắn tổ hợp ta nên tách riêng từng tổ hợp một như BT trên để tính thì kết quả nhanh hơn.

Bài 2:
Tính $S = C_n^0 + \frac{3}{2}C_n^1 + \frac{7}{3}C_n^2 + ... + \frac{{{2^{n + 1}} - 1}}{{n + 1}}C_n^n$
Hướng dẫn:
Như bài trên, từ hệ số $\frac{{{2^{n + 1}} - 1}}{{n + 1}}$ ta lấy cận từ 1 đến 2. Lưu ý: ${1^{n + 1}} = 1,{0^{n + 1}} = 0$ nên đối với các giá trị ${1^{n + 1}}$ đề sẽ ghi là 1 và ${0^{n + 1}}$ hay 0 thì không cần ghi, ta phải tự nhận biết.
Kết quả $\frac{{{3^{n + 1}} - {2^{n + 1}}}}{{n + 1}}$.

Bài 3:
Tính tổng $S = 2C_n^0 - \frac{1}{2} \cdot {2^2}C_n^1 + \frac{1}{3} \cdot {2^3}C_n^2 - ... + {( - 1)^n} \cdot \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^n$
Phân tích: chuỗi đan dấu, hệ số phân số, $\frac{1}{{n + 1}}$ gắn với $C_n^n$, có dấu hiệu dùng tích phân, quan sát hệ số của số hạng cuối ta lấy cận từ 0 đến 2, tức là $\int\limits_0^2 {{{\left( {1 - x} \right)}^n}} dx$.
Giải:
 $\int\limits_0^2 {{{\left( {1 - x} \right)}^n}dx}  = \int\limits_0^2 {\left( {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ { - \frac{{{{(1 - x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_0^2 = \left. {\left[ {C_n^0x - C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} - ... + {{\left( { - 1} \right)}^n}C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_0^2$
$ \Leftrightarrow \frac{{1 - {{( - 1)}^{n + 1}}}}{{n + 1}} = 2C_n^0 - \frac{1}{2} \cdot {2^2}C_n^1 + \frac{1}{3} \cdot {2^3}C_n^2 - ... + {( - 1)^n} \cdot \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^n$
Vậy $S = \frac{{1 + {{( - 1)}^n}}}{{n + 1}}$

Bài 4:
Tính tổng $S = \frac{1}{{n + 1}}C_n^0 - \frac{1}{n}C_n^1 + \frac{1}{{n - 1}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n$
Hướng dẫn:
chuỗi đan dấu, hệ số $\frac{1}{{n + 1}}$ gắn với $C_n^0$, có dấu hiệu sử dụng tích phân của ${(x - 1)^n}$, quan sát hệ số đầu ta lấy cận từ 0 đến 1. Kết quả $S = \frac{{{{\left( { - 1} \right)}^n}}}{{n + 1}}$.

PHẦN II: CÁC PHƯƠNG PHÁP BỔ SUNG
1: Nhân thêm $x,{x^2},...$

Phương pháp:

Thông thường sau khi lấy tích phân hệ số chứa $\frac{1}{{k + 1}}C_n^k$. Nếu bài cho những hệ số dạng $\frac{1}{{k + 2}}C_n^k$ ta phải nhân thêm $x$trước khi tích phân, dạng $\frac{1}{{k + 3}}C_n^k$ ta nhân thêm ${x^2}$ trước khi tích phân,…

Bài 5:
Tính $S = \frac{1}{2}C_n^0 + \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 + ... + \frac{1}{{n + 2}}C_n^n$.
Phân tích: tổng không đan dấu, độ chênh lệch so với dạng cơ bản là 1 nên ta nhân thêm $x$ trước khi tích phân.
Giải:
$\int\limits_0^1 {x{{(1 + x)}^n}} dx = \int\limits_0^1 {\left[ {C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}}} \right]} dx$
$\begin{array}
  \int\limits_0^1 {\left[ {C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}}} \right]} dx \\=
\left. {\left[ {C_n^0\frac{{{x^2}}}{2} + C_n^1\frac{{{x^3}}}{3} + C_n^2\frac{{{x^4}}}{4} + ... + C_n^n\frac{{{x^{n + 2}}}}{{n + 2}}} \right]} \right|_0^1  \\
= \frac{1}{2}C_n^0 + \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 + ... + \frac{1}{{n + 2}}C_n^n = S  \\
\end{array} $
$\int\limits_0^1 {x{{(1 + x)}^n}} dx = \int\limits_0^1 {\left[ {{{(1 + x)}^{n + 1}} - {{(1 + x)}^n}} \right]} dx = \left. {\left[ {\frac{{{{(1 + x)}^{n + 2}}}}{{n + 2}} - \frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_0^1$
$ = \frac{{{2^{n + 2}}}}{{n + 2}} - \frac{{{2^{n + 1}}}}{{n + 1}} + \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{{n{{.2}^{n + 1}} + 1}}{{(n + 1)(n + 2)}}$
Vậy $S = \frac{{n{{.2}^{n + 1}} + 1}}{{(n + 1)(n + 2)}}$

Bài 6:
$S = \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n$
Phân tích: tương tự như bài trên nhưng ở đây chuỗi đan dấu.
Giải:
 $\int\limits_0^1 {x{{(1 - x)}^n}dx = \int\limits_0^1 {\left[ {C_o^nx - C_n^1{x^2} + C_n^2{x^3} - ... + C_n^n{x^{n + 1}}} \right]} } dx$
Tính $\int\limits_0^1 {x{{(1 - x)}^n}dx} $. Đặt $u = 1 - x \Rightarrow du =  - dx$, $\left\{ {\begin{array}{*{20}{c}}
  {x = 0 \Rightarrow u = 1} \\
  {x = 1 \Rightarrow u = 0}
\end{array}} \right.$.
$\int\limits_0^1 {x{{(1 - x)}^n}dx}  = \int\limits_0^1 {(1 - u){u^n}du = \left. {\frac{{{u^{n + 1}}}}{{n + 1}}} \right|} _0^1 - \left. {\frac{{{u^{n + 2}}}}{{n + 2}}} \right|_0^1$
$ = \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{1}{{(n + 1)(n + 2)}}$${I_n}$
$\begin{array}
  \int\limits_0^1 {\left[ {C_n^0x - C_n^1{x^2} + C_n^2{x^3} - ... + {{( - 1)}^n}C_n^n{x^{n + 1}}} \right]} dx  \\
= \left. {\left[ {C_n^0\frac{{{x^2}}}{2} - C_n^1\frac{{{x^3}}}{3} + C_n^2\frac{{{x^4}}}{4} - ... + {{( - 1)}^n}C_n^n\frac{{{x^{n + 2}}}}{{n + 2}}} \right]} \right|_0^1  \\
= \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n  \\
= S  \\
\end{array} $
Vậy $S = \frac{1}{{(n + 1)(n + 2)}}$

2. Truy hồi tích phân
Phương pháp:

Bước 1: Dùng tích phân từng phần để tính . Đưa ${I_n}$ về công thức truy hồi theo ${I_{n - 1}},{I_{n - 2}},...$ Truy hồi lần lượt để suy ra công thức tổng quát của ${I_n}$.
Bước 2: Dựa vào khai triển Newton để tính ${I_n}$.
Cho 2 kết quả bằng nhau.

Bài 7:
a) Tính ${I_n} = \int\limits_0^1 {{{(1 - {x^2})}^n}} dx$
b) Chứng minh rằng $1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$
Giải:
Đặt $\left\{ {\begin{array}{*{20}{c}}
  {u = {{\left( {1 - {x^2}} \right)}^n}} \\
  {dv = dx}
\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {du =  - 2nx{{\left( {1 - {x^2}} \right)}^{n - 1}}dx} \\
  {v = x}
\end{array}} \right.$
${I_n} = \left. {\left[ {{{\left( {1 - {x^2}} \right)}^n}x} \right]} \right|_0^1 + 2n\int\limits_0^1 {{x^2}{{\left( {1 - {x^2}} \right)}^{n - 1}}dx}  \\
= 2n\int\limits_0^1 {\left[ {(1 - (1 - {x^2})} \right]} {\left( {1 - {x^2}} \right)^{n - 1}}dx$
  $ = 2n\int\limits_0^1 {\left[ {{{(1 - {x^2})}^{n - 1}} - {{(1 - {x^2})}^n}} \right]} dx = 2n\left[ {{I_{n - 1}} - {I_n}} \right]$
$ \Rightarrow {I_n} = \frac{{2n}}{{2n + 1}}{I_{n - 1}} = \frac{{2n}}{{2n + 1}}.\frac{{2n - 2}}{{2n - 1}}{I_{n - 2}} = \frac{{2n}}{{2n + 1}}.\frac{{2n - 2}}{{2n - 1}}...\frac{4}{5}.\frac{2}{3}{I_0}$
Mà ${I_0} = \int\limits_0^1 {dx = 1} $ nên ${I_n} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$.
Mặt khác
$\begin{array}
{I_n} = \int\limits_0^1 {{{(1 - {x^2})}^n}} dx = \int\limits_0^1 {\left[ {C_n^0 - C_n^1{x^2} + C_n^2{x^4} - ... + {{( - 1)}^n}C_n^n){x^{2n}}} \right]dx}   \\
= \left. {\left[ {C_n^0x - \frac{1}{3}C_n^1{x^3} + \frac{1}{5}C_n^2{x^5} - ... + {{( - 1)}^n}\frac{1}{{2n + 1}}C_n^n){x^{2n + 1}}} \right]} \right|_0^1  \\
= 1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}}  \\
\end{array} $
Vậy $1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$.

3. Dựa vào tích phân cho trước
Phương pháp:

Tính trực tiếp tích phân và tính tích phân sau khi khai triển Newton. Cho 2 kết quả bằng nhau.

Bài 8:
a) Tính tích phân $I = \int\limits_0^1 {x{{(1 - {x^2})}^n}} dx$
b) Chứng minh $\frac{1}{2}C_n^0 - \frac{1}{4}C_n^1 + \frac{1}{6}C_n^2 - ... + \frac{{{{( - 1)}^n}}}{{2n}}C_n^n = \frac{1}{{2(n + 1)}}$
Hướng dẫn:

Đặt ẩn phụ $u = 1 - {x^2}$ để tính trực tiếp I.

Bài 9:
Cho $n \in {\mathbb{Z}^ + }$.
a)    Tính $I = \int\limits_0^1 {{x^2}{{(1 + {x^3})}^n}dx} $
b)    Chứng minh $\frac{1}{3}C_n^0 + \frac{1}{6}C_n^1 + \frac{1}{9}C_n^2 + ... + \frac{1}{{3n + 3}}C_n^n = \frac{{{2^{n + 1}} - 1}}{{3(n + 1)}}$
Hướng dẫn:

Đặt ẩn phụ $u = 1 + {x^3}$ để tính trực tiếp I.

BÀI TẬP TỰ GIẢI:
Bài 1:

Tính $S = C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + ... + \frac{1}{{n + 1}}C_n^n$
Hướng dẫn: Lấy cận từ 0 đến 1.

Bài 2:
Tính $S = 2C_n^0 + 2C_n^1 + \frac{8}{3}C_n^2 + ... + \frac{{{2^{n + 1}}}}{{n + 1}}C_n^n$
Kết quả: $\frac{{{3^{n + 1}} - 1}}{{n + 1}}$

Bài 3:
Tính tổng $S = C_n^0 - \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 - ... + {( - 1)^n} \cdot \frac{{C_n^n}}{{n + 1}}$
Hướng dẫn: Lấy cận từ 0 đến 1. Kết quả $S = \frac{1}{{n + 1}}$.

Bài 4:
Tính $S = \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^0 - \frac{1}{n} \cdot {2^n}C_n^1 + \frac{1}{{n - 1}} \cdot {2^{n - 1}}C_n^2 - ... + {( - 1)^n} \cdot 2C_n^n$
Hướng dẫn: Lấy cận từ 0 đến 2.
Kết quả $S = \frac{{1 + {{( - 1)}^n}}}{{n + 1}}$.

Bài 5:
Tính $S = \frac{1}{3}C_n^0 + \frac{1}{4}C_n^1 + \frac{1}{5}C_n^2 + ... + \frac{1}{{n + 3}}C_n^n$
Hướng dẫn: $\int\limits_0^1 {{x^2}{{(1 + x)}^n}} dx$

Bài 6:
Tính $S = \frac{1}{{n + 3}}C_n^0 - \frac{1}{{n + 2}}C_n^1 + \frac{1}{{n + 1}}C_n^2 - ... + {( - 1)^n}\frac{1}{3}C_n^n$
Hướng dẫn: Tính $\int\limits_0^1 {{x^2}{{(x - 1)}^n}} dx$

Thẻ

Lượt xem

7966
Chat chit và chém gió
  • ๖ۣۜDämonღ: phong cách bụi bặm 5/26/2017 9:30:17 AM
  • ๖ۣۜDämonღ: kèm theo là cái balo to sụ đằng sau rolling_on_the_floor 5/26/2017 9:30:30 AM
  • Nguyễn Nhung: laughing t luwoif đeo lém 5/26/2017 9:30:38 AM
  • Nguyễn Nhung: tinh đi ng k thuj laughing 5/26/2017 9:30:43 AM
  • Nguyễn Nhung: mag j đút nhờ con bạn rolling_on_the_floor 5/26/2017 9:30:54 AM
  • ๖ۣۜQueenღ: rolling_on_the_floor thế giống ăn xin r m 5/26/2017 9:30:59 AM
  • ๖ۣۜQueenღ: laughing 5/26/2017 9:31:02 AM
  • Nguyễn Nhung:laughing t có mag đi mừu 5/26/2017 9:31:20 AM
  • Nguyễn Nhung: có p of nó đau laughing 5/26/2017 9:31:25 AM
  • Nguyễn Nhung: ms cả có mõi lần thuj 5/26/2017 9:31:36 AM
  • ๖ۣۜQueenღ: AEON Long Biên :v 5/26/2017 9:31:39 AM
  • ๖ۣۜQueenღ: đã méo có tiền đòi đi vào đấy ._. 5/26/2017 9:31:50 AM
  • Nguyễn Nhung: hồi đó lp t cnugx mua nhiu ăn k hết về chia nhau ms sợ laughing 5/26/2017 9:31:56 AM
  • ๖ۣۜDämonღ: bn tiền 1 vé? -.- 5/26/2017 9:32:02 AM
  • Nguyễn Nhung: thế là t cugx chảng mất tiền 5/26/2017 9:32:09 AM
  • ๖ۣۜQueenღ: hình như k mất ;v 5/26/2017 9:32:22 AM
  • Nguyễn Nhung: rẻ k để t rủ banjt đi laughing 5/26/2017 9:32:22 AM
  • ๖ۣۜQueenღ: vào công viên nước ms mất 5/26/2017 9:32:28 AM
  • ๖ۣۜQueenღ: đi đúng đợt sinh nhật :v 5/26/2017 9:32:39 AM
  • ๖ۣۜDämonღ: đm rolling_on_the_floor 5/26/2017 9:32:46 AM
  • ๖ۣۜDämonღ: lớp t đi Đảo Ngọc Xanh 5/26/2017 9:32:56 AM
  • ๖ۣۜDämonღ: lớp t bao trọn cmn cả khu rolling_on_the_floor 5/26/2017 9:33:07 AM
  • ๖ۣۜQueenღ: à lp t cx định đi :3 5/26/2017 9:33:29 AM
  • ๖ۣۜQueenღ: mà thấy bảo k có gì hay ._. 5/26/2017 9:33:35 AM
  • ๖ۣۜDämonღ: tji nó chọn 5/26/2017 9:33:56 AM
  • Nguyễn Nhung: lp t định đi 5/26/2017 9:33:59 AM
  • ๖ۣۜDämonღ: tụi nó chọn 5/26/2017 9:34:00 AM
  • Nguyễn Nhung: mà cô méo cho 5/26/2017 9:34:03 AM
  • ๖ۣۜDämonღ: vắng mà 5/26/2017 9:34:08 AM
  • Nguyễn Nhung: thế là p ở nhà 5/26/2017 9:34:09 AM
  • Nguyễn Nhung: ăn lh straight_face 5/26/2017 9:34:15 AM
  • ๖ۣۜQueenღ: laughing năm nay đi phụ thôi 5/26/2017 9:34:31 AM
  • ๖ۣۜQueenღ: năm sau bảo đi biển 5/26/2017 9:34:38 AM
  • ๖ۣۜDämonღ: t chưa đi AEON bh 5/26/2017 9:34:44 AM
  • ๖ۣۜDämonღ: có gì không? 5/26/2017 9:34:47 AM
  • ๖ۣۜQueenღ: đéo biết ._. tại t ở nhà mà 5/26/2017 9:35:09 AM
  • ๖ۣۜQueenღ: https://scontent.fhan3-1.fna.fbcdn.net/v/t1.0-9/18699815_1909166392705479_2235874335649523130_n.jpg?oh=db2c9b335af924161348a476d11be1fe&oe=59AB4D03 5/26/2017 9:35:12 AM
  • ๖ۣۜQueenღ: đứa này xinh k ._. 5/26/2017 9:35:18 AM
  • ๖ۣۜDämonღ: https://scontent.fhan3-1.fna.fbcdn.net/v/t1.0-9/18664426_1034157796721727_1930290373955851188_n.jpg?oh=512d52394a8978dc51e7b2af627aa1ff&oe=59E7E3EA 5/26/2017 9:35:19 AM
  • ๖ۣۜDämonღ: m ạ 5/26/2017 9:35:38 AM
  • ๖ۣۜDämonღ: t éo thích gái happy 5/26/2017 9:35:44 AM
  • viên đá nhỏ: big_grin 5/26/2017 9:37:28 AM
  • Nguyễn Nhung: laughing 5/26/2017 9:37:30 AM
  • Nguyễn Nhung: đứa nào alij ra quán hk thế kia 5/26/2017 9:38:25 AM
  • Nguyễn Nhung: chăm thế 5/26/2017 9:38:27 AM
  • viên đá nhỏ: laughing 5/26/2017 9:43:22 AM
  • 123456789: wave 5/26/2017 9:45:19 AM
  • Ryo: wave 5/26/2017 9:47:35 AM
  • Nguyễn Nhung: cn ai k? 5/26/2017 10:16:30 AM
  • Ryo: ko 5/26/2017 10:16:43 AM
  • Nguyễn Nhung: cn mk a hả 5/26/2017 10:20:18 AM
  • Nguyễn Nhung: chán nhể 5/26/2017 10:20:19 AM
  • Ryo: happy 5/26/2017 10:20:58 AM
  • Ryo: dg chs game mà 5/26/2017 10:21:03 AM
  • Nguyễn Nhung: a vui nhể 5/26/2017 10:23:27 AM
  • Nguyễn Nhung: dám k đi hk 5/26/2017 10:23:30 AM
  • Ryo: thì sao 5/26/2017 10:24:30 AM
  • Ryo: a nghỉ học rùi sợ j đâu 5/26/2017 10:24:36 AM
  • Ryo: big_grin 5/26/2017 10:24:38 AM
  • Nguyễn Nhung: a sg nhể 5/26/2017 10:27:18 AM
  • Nguyễn Nhung: bm a k bảo j á 5/26/2017 10:27:24 AM
  • ๖ۣۜQueenღ: :3 5/26/2017 10:46:57 AM
  • Nguyễn Nhung: Y chóa lm j đóa big_grin 5/26/2017 10:49:12 AM
  • ๖ۣۜQueenღ: hehe oánh game :3 5/26/2017 10:51:07 AM
  • Nguyễn Nhung: game á 5/26/2017 10:54:37 AM
  • Nguyễn Nhung: hay k ? big_grin 5/26/2017 10:54:46 AM
  • ๖ۣۜQueenღ: hayy <3 5/26/2017 10:57:36 AM
  • Nguyễn Nhung: laughing 5/26/2017 10:59:02 AM
  • Nguyễn Nhung: vui z big_grin 5/26/2017 10:59:08 AM
  • ๖ۣۜQueenღ: đang cố vui đây ;v 5/26/2017 11:00:24 AM
  • ๖ۣۜQueenღ: bà học Toán 12 r nhỉ 5/26/2017 11:00:29 AM
  • Nguyễn Nhung: uk big_grin 5/26/2017 11:03:11 AM
  • ๖ۣۜQueenღ: xong hết CT r ? 5/26/2017 11:13:11 AM
  • Nguyễn Nhung: cn cái chg 2 of hình ý big_grin 5/26/2017 11:16:12 AM
  • ๖ۣۜQueenღ: best =) 5/26/2017 11:18:30 AM
  • Nguyễn Nhung: tế bà hk chưa 5/26/2017 11:20:37 AM
  • Nguyễn Nhung: thế 5/26/2017 11:20:40 AM
  • Ông chủ của cô chủ: ,laughing 5/26/2017 11:40:32 AM
  • ๖ۣۜQueenღ: chưa big_grin 5/26/2017 11:42:29 AM
  • ๖ۣۜQueenღ: ngủ đi :3 5/26/2017 11:42:36 AM
  • tran85295: ờ ngủ đi :v 5/26/2017 11:45:18 AM
  • Nguyễn Nhung: laughing 5/26/2017 11:46:05 AM
  • Nguyễn Nhung: bt thày dậy thuj k t cũng chả hk big_grin 5/26/2017 11:46:16 AM
  • Nguyễn Nhung: ế bà ngủ chưa 5/26/2017 11:52:14 AM
  • Bae Yi Jeong Ah: big_grin cn ai ko z 5/26/2017 12:46:04 PM
  • Bae Yi Jeong Ah: chào buổi sáng mn big_grin 5/26/2017 1:08:39 PM
  • Bae Yi Jeong Ah: rolling_on_the_floor 5/26/2017 1:08:43 PM
  • ๖ۣۜJinღ๖ۣۜKaido: laughing 5/26/2017 4:46:18 PM
  • Ông chủ của cô chủ: laughing 5/26/2017 7:57:46 PM
  • meomeocutduoi: laughing 5/26/2017 9:02:56 PM
  • ๖ۣۜJinღ๖ۣۜKaido: laughing 5/26/2017 9:15:40 PM
  • Ông chủ của cô chủ: laughing 5/26/2017 9:56:59 PM
  • Mây: wave 5/26/2017 11:49:48 PM
  • Ông chủ của cô chủ: ^^ 5/27/2017 12:56:58 AM
  • Ông chủ của cô chủ: big_grin 5/27/2017 12:57:13 AM
  • Bướq Bỉnh: . 5/27/2017 1:58:22 AM
  • Ông chủ của cô chủ: big_grin 5/27/2017 2:10:12 AM
  • Nguyễn Nhung: big_grin 5/27/2017 2:58:23 AM
  • amy: peace_sign 5/27/2017 4:10:33 AM
  • meomeocutduoi: laughing 5/27/2017 4:25:24 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Đức Vỹ
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • phanthilanphuong2011
  • vuthuytrang.ch2609
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • -๖ۣۜGiả๖ۣۜTạo๖ۣۜ
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Tôi Tên "NHÁI"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • ๖ۣۜQueenღ
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ๖ۣۜ⊰Speed⊱๖ۣۜ
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • †✬ɪƒ ƴσυ’ʀє αʟση✬ †
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Lành
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • ProGK
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • ๖ۣۜSadღ
  • phng_pepsi
  • Young Wild and Free
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • johnnn509
  • -
  • Nhok Sam
  • Nguyễn Đức Minh
  • Ryo
  • TMLLL
  • cụ nhỏ
  • meomeocutduoi
  • Update
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • Trangg'sss Kiềuu'sss
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • LLNTFTU
  • NiuNiu
  • Bae Yi Jeong Ah
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Út Nguyệt
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • phanngocngoc12345
  • Snowflakes
  • tieuhame4444
  • TenshiBaka
  • math
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • tran85295
  • Bae Yi Jeong Ah
  • net.sonicz
  • Huyền Kute
  • Ông chủ của cô chủ
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69