Way 3:With x≥0⇒√6(x2−2x+4)=√4x2+2(x−3)2+6>2|x|=2x
→ Disequations ⇔2x−4+2√x≥√6(x2−2x+4) (1)
x=0 is not a solution of disequation
x>0→(1)⇔2(√x−2√x)+2≥√6(x−2+4x) (2)
Set: √x−2√x=t⇒t2=.............
(2)⇔{2t+2≥04t2+8t+4≥6t2+12⇔............⇔t=2
⇔x=4+2√3
Conclude...................