Cách này dễ hơn
Đặt $\frac{a}{b}=\frac{c}{d}=k,$ ta có:
$\star \begin{cases}a=kb \\ c=kd \end{cases}$
$\star \frac{a^2+b^2}{c^2+d^2}=\frac{(kb)^2+b^2}{(kd)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}.$
$\star \frac{ab}{cd}=\frac{kb.b}{kd.d}=\frac{b^2}{d^2}.$
$\color{red}{\Rightarrow \frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd} (DPCM.)}$