Áp dụng BĐT Cauchy ta có: $xy\le\dfrac{(x+y)^2}{4}=\dfrac{1}{4}$.
Ta có:
$P=x^2y^2+\dfrac{1}{x^2y^2}+2$
$=256x^2y^2+\dfrac{1}{x^2y^2}-255x^2y^2+2$
$\ge2\sqrt{256x^2y^2.\dfrac{1}{x^2y^2}}-255.\dfrac{1}{16}+2$
$=\dfrac{289}{16}$
Dấu bằng xảy ra khi: $x=y=\dfrac{1}{2}$