$I=\int_{\sqrt[3]{3}}^{1}\frac{dx}{x^4\sqrt[3]{(1+\frac{1}{3x^3})^4}}\\
t=\sqrt[3]{1+\frac{1}{3x^3}}\Rightarrow t^3=1+\frac{1}{3x^3}\Rightarrow 3t^2dt=-\frac{dx}{x^4}\\
I=\int_{\sqrt[3]{\frac{4}{3}}}^{\sqrt[3]{\frac{10}{9}}}\frac{3t^2dt}{t^4}==\int_{\sqrt[3]{\frac{4}{3}}}^{\sqrt[3]{\frac{10}{9}}}\frac{3dt}{t^2}=-\frac{3}{t}\\
I=-3(\sqrt[3]{\frac{9}{10}}-\sqrt[3]{\frac{3}{4}})$