Đặt x=tant⇒dx=dtcos2t
I=∫π40ln(1+tant)1cos2t.11+tan2t=∫ln(1+tant)dt
Đặt t=π4−u⇒−dt=du
I=∫π40ln[1+tan(π4−u)]du (∗)
Trong đó 1+tan(π4−u)=1+1−tanu1+tanu=21+tanu thay vào (∗)
I=∫ln21+tanudu=∫ln2du−∫ln(1+tanu)du
=xln2|π40−∫ln(1+tant)dt=π4ln2−I
⇒2I=π4ln2⇒I=π8ln2