$\sin^2 ( a+b)= (\sin a \cos b + \sin b \cos a)^2 =\sin^2 a \cos^2 b + \sin^2 b \cos^2 a + 2\sin a \cos a \sin b \cos b$
$=\sin^2 a (1-\sin^2 b) + \sin^2 b (1-\sin^2 a) + 2\sin a \cos a \sin b \cos b$
$=\sin^2 a + \sin^2 b -2\sin^2 a \sin^2 b + 2\sin a \cos a \sin b \cos b$
$=\sin^2 a + \sin^2 b +2\sin a \sin b (\cos a \cos b - \sin a \sin b)=\sin^2 a + \sin^2 b +2\sin a \sin b \cos (a+b)$