Đặt: $T=\dfrac{x^3}{x^2+xy+y^2}+\dfrac{y^3}{y^2+yz+z^2}+\dfrac{z^3}{x^2+xz+z^2}$
Ta có:
$S-T=\dfrac{x^3-y^3}{x^2+xy+y^2}+\dfrac{y^3-z^3}{y^2+yz+z^2}+\dfrac{z^3-x^3}{x^2+xz+z^2}$
$=(x-y)+(y-z)+(z-x)=0$
Suy ra:
$2S=\dfrac{x^3+y^3}{x^2+xy+y^2}+\dfrac{y^3+z^3}{y^2+yz+z^2}+\dfrac{z^3+x^3}{x^2+xz+z^2}$
Mà ta có:
$(x+y)(x-y)^2\ge0$
$\Leftrightarrow x^3+y^3\ge x^2y+xy^2$
$\Leftrightarrow 3(x^3+y^3)\ge(x^2+xy+y^2)(x+y)$
$\Leftrightarrow \dfrac{x^3+y^3}{x^2+xy+y^2}\ge\dfrac{x+y}{3}$
Tương tự: $\dfrac{y^3+z^3}{y^2+yz+z^2}\ge\dfrac{y+z}{3};\dfrac{x^3+z^3}{x^2+xz+z^2}\ge\dfrac{x+z}{3}$
Từ đó suy ra:
$S\ge\dfrac{x+y+z}{3}=3$
Dấu bằng xảy ra khi: $x=y=z=3$