$\Leftrightarrow $$ \left [ \begin{matrix}\left\{ \begin{array}{l} 2x-1<0\\ 2x^{2}+3x-5>0 \end{array} \right. (I)\\ \left\{ \begin{array}{l} 2x-1>0\\ \sqrt{2x^{2}+3x-5}<2x-1(II) \end{array} \right.\end{matrix}
\right. $Giai (I): $\Leftrightarrow $$\left\{ \begin{array}{l} x<1/2\\ x\in (-\infty ;-\frac{5}{2})\cup (1;+\infty) \end{array} \right.$$\Leftrightarrow $$x\in(-\infty;-\frac{5}{2}) $
Giai (II)$\Leftrightarrow \left\{ \begin{array}{l} \left\{ \begin{array}{l} 2x-1>0\\ 2x^{2}+3x-5>0 \end{array} \right.\\ 2x^{2}+3x-5<(2x-1)^{2} \end{array} \right.$
$\Leftrightarrow $ $\left\{ \begin{array}{l} \left\{ \begin{array}{l} x>1/2\\ x\in (-\infty ;-5/2)\cup (1;+\infty )\end{array} \right.\\ 2x^{2}-7x+6>0\end{array} \right.$ $\Leftrightarrow $$\left\{ \begin{array}{l} x\in(1;+\infty ) \\ x\in (-\infty ;3/2)\cup (2;+\infty )\end{array} \right.$$\Leftrightarrow x\in (2;+\infty )$
vay tap nghiem cua bpt da cho la:$ S=(-\infty ;-5/2)\cup (2;+\infty) $