Cho nửa đường tròn tâm $O$ đường kính $AB$, gọi $C$ là một điểm thuộc nửa đường tròn, $H$ là hình chiếu của $C$ trên $AB$. Qua trung điểm $M$ của $CH$ kẻ đường thẳng vuông góc với $OC$ cắt đường tròn tâm $O$ ở $D, E. $
Chứng minh rằng $(C;CD)$ tiếp xúc với $AB$