sin4xa+cos4xb=1a+b⇔sin4x.a+ba+cos4x.a+bb=1
⇔sin4x+sin4x.ba+cos4x+cos4x.ab=(sin2x+cos2x)2
⇔sin4x.ba+cos4x.ab=2sin2x.cos2x
⇔b2sin4x+a2cos4x=2ab.sin2x.cos2x
⇔(bsin2x−acos2x)2=0
⇔bsin2x=acos2x
⇔sin2xa=cos2xb=sin2x+cos2xa+b=1a+b
⇔{sin2x=aa+bcos2x=ba+b
Thay vào biểu thức đã cho
sin10xa4+cos10xb4
=1a4.a5(a+b)5+1b4.b5(a+b)5
=a(a+b)5+b(a+b)5=1(a+b)4