Áp dụng BĐT Cauchy ta có:\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le\dfrac{1}{2}\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)Tương tự suy ra:\sum_{A,B,C}\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le2(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2})Ta chỉ cần chứng minh: \tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\le\cot A+\cot B+\cot CTa có:\cot A+\cot B=\dfrac{\sin(A+B)}{\sin A\sin B}=\dfrac{2\sin C}{\cos(A-B)-\cos(A+B)}\ge\dfrac{2\sin C}{1+\cos C}=\tan\dfrac{C}{2}Tương tự: \cot B+\cot C\ge\tan\dfrac{A}{2},\cot C+\cot A\ge\tan\dfrac{B}{2}Cộng 3 BĐT trên ta có đpcm.
Áp dụng BĐT Cauchy ta có:\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le\dfrac{1}{2}\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)Tương tự suy ra:\sum_{A,B,C}\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le2(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2})Ta chỉ cần chứng minh: \tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\le\cot A+\cot B+\cot CTa có:$\cot A+\cot B=\dfrac{\sin(A+B)}{\sin A\sin B}=\dfrac{2\sin C}{\cos(A-B)-\cos(A+B)}\ge\dfrac{2\sin C}{1+\cos C}=2\tan\dfrac{C}{2}Tương tự: \cot B+\cot C\ge2\tan\dfrac{A}{2},\cot C+\cot A\ge2\tan\dfrac{B}{2}$Cộng 3 BĐT trên ta có đpcm.