|
|
Giải phương trình sau: cos5x=sin3x
Cách 1: cos5x=sin3x ⇔cos5x=cos(π2−3x) ⇔[5x=π2−3x+k2π5x=−π2+3x+k2π ⇔[8x=π2+k2π2x=−π2+k2π ⇔[x=π16+kπ4x=−π4+kπ Cách 2: cos5x=sin3x ⇔sin3x=sin(π2−5x) ⇔[3x=π2−5x+k2π3x=π−π2+5x+k2π ⇔[3x+5x=π2+k2π3x−5x=π−π2+k2π ⇔[8x=π2+k2π−2x=π2+k2π ⇔[x=π16+kπ4x=−π4−kπ
|