|
|
|
Tính tích phân: $I = \int\limits_0^{\frac{\pi }{2}} {\sqrt {1 - \sqrt 3 \sin 2x + 2{{\cos }^2}x} dx}$ Bài giải: Ta có: $1 - \sqrt 3 \sin 2x + 2{\cos ^2}x$ $= {\sin ^2}x - 2\sqrt 3 \sin x\cos x + 3{\cos ^2}x$ $= {\left( {\sin x - \sqrt 3 \cos x} \right)^2}$ $= {\left[ {2\left( {\frac{1}{2}{\mathop{\rm s}\nolimits} {\rm{inx}} - \frac{{\sqrt 3 }}{2}c{\rm{os}}x} \right)} \right]^2}$ $= {\left[ {2\sin \left( {x - \frac{\pi }{3}} \right)} \right]^2}$ Suy ra: $\sqrt {1 - \sqrt 3 \sin 2x + 2{{\cos }^2}x}$ $= \sqrt {{{\left[ {2\sin \left( {x - \frac{\pi }{3}} \right)} \right]}^2}}$ $= 2\left| {\sin \left( {x - \frac{\pi }{3}} \right)} \right|$ Do đó: $I = \int\limits_0^{\frac{\pi }{2}} {\sqrt {1 - \sqrt 3 \sin 2x + 2{{\cos }^2}x} dx}$ $= - 2\int\limits_0^{\frac{\pi }{3}} {\sin \left( {x - \frac{\pi }{3}} \right)dx} + 2\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\sin \left( {x - \frac{\pi }{3}} \right)dx}$ $= 2\left. {c{\rm{os}}\left( {x - \frac{\pi }{3}} \right)} \right|_0^{\frac{\pi }{3}} - 2\left. {c{\rm{os}}\left( {x - \frac{\pi }{3}} \right)} \right|_{\frac{\pi }{3}}^{\frac{\pi }{2}}$ $= 2\left( {1 - \frac{1}{2}} \right) - 2\left( {\frac{{\sqrt 3 }}{2} - 1} \right)$ $= 3 - \sqrt 3$
|