|
|
Ta có: VP=cosxsinx−cos16xsin16x=cosxsinx−2cos28x−1sin16x=cosxsinx−2cos28x2cos8x.sin8x+1sin16x=cosxsinx−cos8xsin8x+1sin16x=cosxsinx−2cos24x−1sin8x+1sin16x=cosxsinx−2cos24x2cos4x.sin4x+1sin8x+1sin16x=cosxsinx−cos4xsin4x+1sin8x+1sin16x=cosxsinx−2cos22x−1sin4x+1sin8x+1sin16x=cosxsinx−2cos22x2cos2x.sin2x+1sin4x+1sin8x+1sin16x=cosxsinx−cos2xsin2x+1sin4x+1sin8x+1sin16x=cosxsinx−2cos2x−1sin2x+1sin4x+1sin8x+1sin16x=cosxsinx−2cos2x2sinx.cosx+1sin2x+1sin4x+1sin8x+1sin16x=cosxsinx−cosxsinx+1sin2x+1sin4x+1sin8x+1sin16x=VT
|