Áp dụng bổ đề: $\dfrac{1}{(n+1)\sqrt n+n\sqrt{n+1}}=\dfrac{1}{\sqrt n}+\dfrac{1}{\sqrt{n+1}}, ta được:S=\dfrac{1}{\sqrt 1}-\dfrac{1}{\sqrt 2}+\dfrac{1}{\sqrt2}-\dfrac{1}{\sqrt3}+\dfrac{1}{\sqrt3}-\dfrac{1}{\sqrt4}+\ldots+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}} =\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{100}}=\dfrac{9}{10}$
Áp dụng bổ đề: $\dfrac{1}{(n+1)\sqrt n+n\sqrt{n+1}}=\dfrac{1}{\sqrt n}-\dfrac{1}{\sqrt{n+1}}, ta được:S=\dfrac{1}{\sqrt 1}-\dfrac{1}{\sqrt 2}+\dfrac{1}{\sqrt2}-\dfrac{1}{\sqrt3}+\dfrac{1}{\sqrt3}-\dfrac{1}{\sqrt4}+\ldots+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}} =\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{100}}=\dfrac{9}{10}$