Điều kiện: $\left\{\begin{array}{l}x+1\ne0\\4-x>0\\4+x>0\end{array}\right.\Leftrightarrow \left\{\begin{array}{l}-4<x<4\\x\ne-1\end{array}\right.$
Phương trình đã cho tương đương với:
$\log_2|x+1|+2=\log_2(4-x)+\log_2(4+x)$
$\Leftrightarrow \log_2|x+1|+2=\log_2(16-x^2)$
$\Leftrightarrow \log_2(4|x+1|)=\log_2(16-x^2)$
$\Leftrightarrow 4|x+1|=16-x^2$
$\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}-1<x<4\\4(x+1)=16-x^2\end{array}\right.\\\left\{\begin{array}{l}-4<x<-1\\-4(x+1)=16-x^2\end{array}\right.\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}-1<x<4\\x^2+4x-12=0\end{array}\right.\\\left\{\begin{array}{l}-4<x<-1\\x^2-4x-20=0\end{array}\right.\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x=2\\x=2-2\sqrt6\end{array}\right.$