a) ta có:1n.(n+1)−1(n+1).(n+2)=(n+1)(n+2)n.(n+1)(n+1)(n+2)−n(n+1)n(n+1)(n+1)(n+2)=(n+2)n(n+1)(n+2)−nn(n+1)(n+2)=(n+2)−nn(n+1)(n+2)=2n(n+1)(n+2) [ĐPCM]b) 11.2.3+12.3.4+13.4.5+....+137.38.39=(21.2.3+22.3.4+23.4.5+...+237.38.39):2=11.2−12.3+12.3−13.4+13.4−14.5+....+137.38−138.39=11.2−138.39=12−11482=7401482
a) ta có:1n.(n+1)−1(n+1).(n+2)=(n+1)(n+2)n.(n+1)(n+1)(n+2)−n(n+1)n(n+1)(n+1)(n+2)=(n+2)n(n+1)(n+2)−nn(n+1)(n+2)=(n+2)−nn(n+1)(n+2)=2n(n+1)(n+2) b) 11.2.3+12.3.4+13.4.5+....+137.38.39=(21.2.3+22.3.4+23.4.5+...+237.38.39):2=11.2−12.3+12.3−13.4+13.4−14.5+....+137.38−138.39=11.2−138.39=12−11482=7401482