A.    TÓM TẮT LÝ THUYẾT:
$1.$ Phương trình tham số và phương trình chính tắc.
Đường thẳng $d$ đi qua $M_0(x_0;y_0;z_0)$  và có vectơ chỉ phương $\overrightarrow{u}=(a;b;c)$  có :
- Phương trình tham số của $d: \begin{cases}x=x_0+at \\ y=y_0+bt \\z=z_0+ct\end{cases}      (t \in \mathbb{R}) $
- Phương trình chính tắc của $d:\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}            (abc \ne 0)$ 
$2.$ Vị trí tương đối của hai đường thẳng.
Đường thẳng $d$ đi qua $M_0(x_0;y_0;z_0)$  và có vectơ chỉ phương  $\overrightarrow{u}=(a;b;c)$  và đường thẳng $d'$  đi qua $M'_0(x'_0;y'_0;z'_0)$  và có vectơ chỉ phương $\overrightarrow{u'}=(a';b';c')$ . Khi đó:
+ $d$ và $d'$  cùng nằm trong một mặt phẳng $\Leftrightarrow \left[ {\overrightarrow{u},\overrightarrow{u'}} \right].\overrightarrow{M_0M'_0}=0$ .
+ $d$ và $d'$  cắt nhau $\Leftrightarrow\begin{cases}\left[ {\overrightarrow{u},\overrightarrow{u'}} \right].\overrightarrow{M_0M'_0}=0\\ \left[ {\overrightarrow{u},\overrightarrow{u'}} \right] \ne\overrightarrow{0} \end{cases}$.
+ $d \parallel d' \Leftrightarrow\begin{cases}\left[ {\overrightarrow{u},\overrightarrow{u'}} \right]=\overrightarrow{0}\\ \left[ {\overrightarrow{u},\overrightarrow{M_0M'_0}} \right] \ne\overrightarrow{0} \end{cases}$.
+ $d \equiv d' \Leftrightarrow \left[ {\overrightarrow{u},\overrightarrow{u'}} \right]=\left[ {\overrightarrow{u},\overrightarrow{M_0M'_0}} \right]=\overrightarrow{0}$
+ $d$ và $d’$ chéo nhau  $\Leftrightarrow\left[ {\overrightarrow{u},\overrightarrow{u'}} \right]\overrightarrow{M_0M'_0}=\overrightarrow{0}$
$3.$ Vị trí tương đối của đường thẳng với mặt phẳng.
Đường thẳng $d$ đi qua $M_0(x_0;y_0;z_0)$  và có vectơ chỉ phương $\overrightarrow{u}=(a;b;c)$  và mặt phẳng   $(P) : Ax+By+Cz+D=0$ có vectơ pháp tuyến $\overrightarrow{n}=(A;B;C)$ . Khi đó:
+ $d$ cắt  $(P)\Leftrightarrow Aa+Bb+Cc \ne 0$
+ $d \parallel (P)\Leftrightarrow \begin{cases}Aa+Bb+Cc = 0 \\ Ax_0+by_0+Cz_0+D \ne 0 \end{cases}$
+ $d \subset (P)\Leftrightarrow \begin{cases}Aa+Bb+Cc = 0 \\ Ax_0+by_0+Cz_0+D = 0 \end{cases}$
+ $d \perp (P) \Leftrightarrow \overrightarrow{u} \parallel \overrightarrow{n} \Leftrightarrow \left[ {\overrightarrow{u},\overrightarrow{n}} \right]=\overrightarrow{0}$
$4.$ Góc giữa hai đường thẳng.
Cho đường thẳng $d$ có vectơ chỉ phương $\overrightarrow{u}=(a;b;c)$  và đường thẳng $d'$  có vectơ chỉ phương  $\overrightarrow{u'}=(a';b';c')$. Gọi $0^\circ \le\phi \le 90^\circ$  là góc giữa hai đường thẳng đó ta có:
$\cos \phi = \frac{\left| {\overrightarrow{u}.\overrightarrow{u'}} \right|}{|\overrightarrow{u}|.|\overrightarrow{u'}|}=\frac{|aa'+bb'+cc'|}{\sqrt{a^2+b^2+c^2}.\sqrt{a'^2+b'^2+c'^2}}$
 $5.$ Góc giữa đường thẳng với mặt phẳng.
Cho đường thẳng $d$ có vectơ chỉ phương $\overrightarrow{u}=(a;b;c)$  và mặt phẳng $(P)$  có vectơ pháp tuyến $\overrightarrow{n}=(A;B;C)$ . Gọi $0^\circ \le \psi \le 90^\circ$  là góc hợp bởi đường thẳng $d$ và mặt phẳng $(P)$  ta có:
$\sin \psi = \frac{\left| {\overrightarrow{u}.\overrightarrow{n}} \right|}{|\overrightarrow{u}|.|\overrightarrow{n}|}=\frac{|Aa+Bb+Cc|}{\sqrt{a^2+b^2+c^2}.\sqrt{A^2+B^2+C^2}}$
 $6.$ Khoảng cách từ điểm $M_1(x_1;y_1;z_1)$  đến đường thẳng $\Delta$  có vectơ chỉ phương $\overrightarrow{u}$ :
+ Cách $1:$
-    Viết phương trình mặt phẳng $(Q)$  qua $M_1$ và vuông góc với $\Delta$.
-    Tìm tọa độ giao điểm $H$ của $\Delta$  và mặt phẳng $(Q)$ .
-    d$(M_1, \Delta)=M_1H$ .
+ Cách $2:$ Sử dụng công thức:  d$(M_1, \Delta)=\frac{\left| {\left[ {\overrightarrow{M_1M_0},\overrightarrow{u}} \right]} \right|}{|\overrightarrow{u}|}$
$7.$ Khoảng cách giữa hai đường thẳng chéo nhau.
Cho hai đường thẳng chéo nhau $\Delta$  đi qua $M_0(x_0;y_0;z_0)$  và có vectơ chỉ phương $\overrightarrow{u}$ và đường thẳng $\Delta'$  đi qua $M'_0(x'_0;y'_0;z'_0)$  và có vectơ chỉ phương $\overrightarrow{u'}$ .
+ Cách $1:$
-    Viết phương trình mặt phẳng $(Q)$ chứa $\Delta$ và song song với  $\Delta'$.
-    Tính khoảng cách từ $M'_0$ tới mặt phẳng $(Q)$ .
-    d$(\Delta,\Delta')=$d$(M'_0,(Q))$ .
+ Cách $2:$ Sử dụng công thức: d$(\Delta,\Delta')=\frac{\left| {\left[ {\overrightarrow{u},\overrightarrow{u'}} \right].\overrightarrow{M_0M'_0}} \right|}{\left| {\left[ {\overrightarrow{u},\overrightarrow{u'}} \right]} \right|}$ .

B.  CÁC DẠNG TOÁN
Dạng I: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương
Ví dụ $1.$
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng
$d :\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-2}{3}$ và mặt phẳng $P : x - y - z -1 = 0$ . Viết phương trình đường thẳng $\Delta$ đi qua $A(1;1;-2)$ , song song với mặt phẳng $(P)$ và vuông góc với đường thẳng $d .$
Lời giải :
Để tìm một VTCP của $\Delta$ ta phải tìm hai VTPT không cùng phương của nó rồi tìm tích có hướng của hai vectơ này.
Như vậy, $\overrightarrow{u_{\Delta}}=\left[ {\overrightarrow{u_{d}};\overrightarrow{n_{P}}}\right]=(2;5;-3)$
Trong đó $\overrightarrow{u_{d}}=(2;1;3);\overrightarrow{n_{P}}=(1;-1;-1)$
$\Delta$ đi qua $A(1;1;-2)$ và có VTCP $\overrightarrow{u_{\Delta}}=(2;5;-3)$ nên có phương trình
$\Delta : \frac{x-1}{2}=\frac{y-1}{5}=\frac{z+2}{-3}$
Ví dụ $2.$ Trong không gian với hệ toạ độ Oxyz, cho đường thẳng
$\Delta :\frac{x-1}{2}=\frac{y+1}{1}=\frac{z}{-1}$ và mặt phẳng $P : x - y - z -1 = 0$ . Viết phương trình đường thẳng $d$ đi qua $M(2;1;0)$ , cắt và vuông góc với $\Delta$.
Lời giải :
$ \overrightarrow{u_{\Delta}}=(2;1; -1) $ . Gọi $H = d \cap \Delta$.
Do $H \in \Delta$ nên có thể giả sử $H(1+ 2t;-1+ t;-t) \Rightarrow \overrightarrow{MH} = (2t -1;t - 2;-t)$.
$\overrightarrow{MH} \perp \overrightarrow{u_{\Delta}} \Leftrightarrow 2(2t -1) + ( t- 2) - (-t ) = 0 \Leftrightarrow t=\frac{2}{3} \Leftrightarrow \overrightarrow{u_{d}} = 3\overrightarrow{MH} = (1;-4;-2)$
$\Rightarrow d : \begin{cases}x=2+t \\ y= 1-4t\\z=-2t\end{cases}$
Bài tập tương tự
 
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng $(d)$ có phương trình:
$ \begin{cases}x = -t \\ y = -1+ 2t \\ z = 2 + t \end{cases} ( t \in \mathbb{R} )$ và mặt phẳng $(P): 2x - y - 2z - 3 = 0 $.Viết phương trình tham số của đường thẳng $\Delta$ nằm trên $(P)$, cắt và vuông góc với $(d).$
Đáp số :
 $\Delta: \begin{cases}x = 1+t \\ y =-3\\ z =1 + t \end{cases} ( t \in \mathbb{R} )$.


Dạng II: Viết phương trình đường thẳng liên quan đến một đường thẳng khác.
Ví dụ $1.$
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng
$d : \frac{x+1}{3}=\frac{y-2}{-2}=\frac{z-2}{2}$
và mặt phẳng $(P): x + 3y + 2z + 2 = 0$. Lập phương trình đường thẳng $\Delta$ song song với mặt phẳng $(P),$ đi qua $M(2; 2; 4)$ và cắt đường thẳng $(d).$
Lời giải :
Đường thẳng $(d)$ có PT tham số : $\begin{cases}x=-1+3t \\ y=2-2t\\z=2+2t \end{cases}$.
Mặt phẳng $(P)$ có VTPT $\overrightarrow{n} = (1; 3; 2)$
Giả sử $N(-1 + 3t ; 2 - 2t ; 2 + 2t) \in d \Rightarrow \overrightarrow{MN}= (3t - 3;-2t;2t - 2)$
Để $MN \parallel (P) $ thì $\overrightarrow{MN}.\overrightarrow{n} = 0 \Leftrightarrow 1.(-1+3t)+3.(2-2t)+2.(2+2t)=0\Leftrightarrow t = 7 \Rightarrow  \overrightarrow{MN}= (18;-14;12)$
Do $\Delta \parallel MN$ nên chọn $\overrightarrow{u_{\Delta}}= (9;-7;6)$
Phương trình đường thẳng $\Delta : \frac{x-2}{9}=\frac{y-2}{-7}=\frac{z-4}{6}$
Câu hỏi tương tự:
$d : \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{1}, (P) : x + 3y + 2z + 2 = 0 , M(2;2;4).$ Đáp số :
$\Delta : \frac{x-1}{1}=\frac{y-3}{-1}=\frac{z-3}{1}$

Dạng III: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác.
Ví dụ $1.$
Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng $d$ đi qua điểm $M(-4;-5;3)$ và cắt cả hai đường thẳng: $d_1 : \begin{cases}2x+3y+11=0 \\ y-2z+7=0 \end{cases}$ và $d_2 : \frac{x-2}{2}=\frac{y+1}{3}=\frac{z-1}{-5}$
Lời giải :
Viết lại phương trình các đường thẳng: $d_1: \begin{cases}x=5-3t_1 \\ y=-7+2t_1 \\z=t_1\end{cases}      (t_1 \in \mathbb{R}) , d_2: \begin{cases}x=2+2t_2 \\ y=-1+3t_2 \\z=1-5t_2\end{cases}      (t_2 \in \mathbb{R}) $
Gọi $A = d \cap d_1,B = d \cap d_2 \Rightarrow A(5 - 3t_1;-7 + 2t_1;t_1) , B(2 + 2t_2;-1+ 3t_2;1- 5t_2).$
$\overrightarrow{MA} = (-3t_1 + 9;2t_1 - 2;t_1 - 3), \overrightarrow{MB} = (2t_2 + 6;3t_2 + 4;-5t_2 - 2)$
$\left[ {\overrightarrow{MA},\overrightarrow{MB}} \right] = (-13t_1t_2 - 8t_1 +13t_2 +16;-13t_1t_2 + 39t_2;-13t_1t_2 - 24t_1 + 31t_2 + 48)$
$M, A, B$ thẳng hàng $\Leftrightarrow \overrightarrow{MA},\overrightarrow{MB}$ cùng phương $\Leftrightarrow \left[ {\overrightarrow{MA},\overrightarrow{MB}} \right] =\overrightarrow{0}$
$\Rightarrow A(-1;-3;2),B(2;-1;1) \Rightarrow \overrightarrow{AB} = (3;2;-1)$
Đường thẳng $d$ qua $M(–4; –5; 3)$ và có VTCP $\overrightarrow{AB} = (3;2;-1)$
$\Rightarrow d: \begin{cases}x=-4-3t \\ y=-5+2t \\z=3-t\end{cases}      (t \in \mathbb{R}) $
Câu hỏi tương tự:
$M(3;10;1)$, $d_1 : \frac{x-2}{3}=\frac{y+1}{1}=\frac{z+3}{2}$ và $d_2 : \frac{x-3}{1}=\frac{y-7}{-2}=\frac{z-1}{-1}$
Đáp số : $ d: \begin{cases}x=3+2t \\ y=10-10t \\z=1-2t\end{cases}      (t \in \mathbb{R}) $

Dạng IV: Viết phương trình đường thẳng liên quan đến khoảng cách.
Ví dụ $1.$
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng $(d): \begin{cases}x=2+4t \\ y=3+2t \\z=-3+t\end{cases}$ và mặt phẳng $(P): -x + y + 2z + 5 = 0$ . Viết phương trình đường thẳng $(\Delta)$ nằm trong $(P),$ song song với $(d)$ và cách $(d)$ một khoảng là $\sqrt{14}$ .
Lời giải :
Chọn $A(2;3; -3), B(6;5; -2) \in (d),$ mà thấy rằng $A, B \in (P)$ nên $(d) \subset (P) .$
Gọi $\overrightarrow{u}$ là VTCP của $( d_1) \subset (P)$, qua $A$ và vuông góc với $(d)$ thì $\begin{cases}\overrightarrow{u} \perp \overrightarrow{u_d} \\ \overrightarrow{u} \perp \overrightarrow{u_P} \end{cases}$
nên ta chọn $\overrightarrow{u} = [\overrightarrow{u_d} ,\overrightarrow{u_P} ] = (3;-9;6)$ .
Phương trình của đường thẳng $( d_1) : \begin{cases}x=2+3t \\ y=3-9t \\z=-3+6t\end{cases}$
Lấy $M(2+3t; 3 -9t; -3+6t) \in ( d_1)$ . $(\Delta)$ là đường thẳng qua $M$ và song song với  $(d).$
Theo đề : $AM=\sqrt{14}\Leftrightarrow \sqrt{9t^2+81t^2+36t^2}=\sqrt{14}\Leftrightarrow 9t^2=1\Leftrightarrow t=\pm \frac{1}{3}$
Với $t= \frac{1}{3}\Rightarrow M(1;6;-5)\Rightarrow (\Delta) :\frac{x-1}{4}=\frac{y-6}{2}=\frac{z+5}{1}$
Với $t= -\frac{1}{3}\Rightarrow M(3;0;-1)\Rightarrow (\Delta) :\frac{x-3}{4}=\frac{y}{2}=\frac{z+1}{1}$
Ví dụ $2.$ Trong không gian với hệ tọa độ Oxyz , cho đường thẳng $(d): \begin{cases}x=2+t \\ y=1-t \\z=1-3t\end{cases}$ và mặt phẳng $(P): x + y -z + 1= 0$ . Gọi $I$ là giao điểm của $d$ và $(P).$ Viết phương trình của đường thẳng $\Delta$ nằm trong $(P)$, vuông góc với $d$ sao cho khoảng cách từ $I$ đến $\Delta$ bằng $3 \sqrt 2$.
Lời giải :
$(P)$ có VTPT $ \overrightarrow{n_P}= (1;1;-1)$ và $d$ có VTCP $ \overrightarrow{u}= (1;-1;-3) . $
$I = d \cap (P)\Rightarrow I(x=2+t ; y=1-t ;z=1-3t) \in (P) \Rightarrow I(1;2;4)$
Vì $\Delta \subset (P); \Delta \perp d \Rightarrow \Delta$ có véc tơ chỉ phương $\overrightarrow{u_{\Delta}}=[\overrightarrow{n_P};\overrightarrow{u}]=(-4;2;-2)$
Gọi $H$ là hình chiếu của $I$ trên $\Delta \Rightarrow H \in mp(Q) $ qua $I$ và vuông góc $\Delta$
$\Rightarrow $ Phương trình $(Q): -4(x -1) + 2(y - 2) -2(z - 4) = 0\Leftrightarrow -2x + y - z + 4 = 0$
Gọi $d_1 = (P) \cap (Q)\Rightarrow d_1$ có VTCP $\overrightarrow{u_{d_1}}=[\overrightarrow{n_P};\overrightarrow{n_Q}] = (0;3;3) = 3(0;1;1)$ và $d_1$ qua $I\Rightarrow d_1 : \begin{cases}x=1 \\ y=2+t \\z=4+t\end{cases}$
Giả sử $H \in d_1 \Rightarrow H(1;2 + t;4 + t) \Rightarrow\overrightarrow{IH} = (0;t;t)$
Ta có:
$IH=3\sqrt 2 \Leftrightarrow \sqrt{2t^2}=3\sqrt 2\Leftrightarrow \left[ {\begin{matrix} t=3\\t=-3 \end{matrix}} \right.$
Với $t=3\Rightarrow H(1;5;7)\Rightarrow (\Delta) :\frac{x-1}{-2}=\frac{y-5}{1}=\frac{z-7}{-1}$
Với $t= -3\Rightarrow M(1;-1;1)\Rightarrow (\Delta) :\frac{x-1}{-2}=\frac{y+1}{1}=\frac{z-1}{-1}$
Câu hỏi tương tự:
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng $(P): 2x + y - 2z + 9 = 0$ và đường thẳng
$d : \frac{x+1}{1}=\frac{y-1}{7}=\frac{z-3}{-1}$. Viết phương trình đường thẳng $\Delta$ vuông góc với $(P)$ và cắt $d$ tại một điểm $M$ cách $(P)$ một khoảng bằng $2.$
Đáp số :
$\Delta : \begin{cases}x=-\frac{19}{11}+2t \\ y=-\frac{45}{11}+t \\z=\frac{41}{11}-2t\end{cases}  (t \in \mathbb{R})$
hoặc $ \Delta: \begin{cases}x=-\frac{7}{11}+2t \\ y=\frac{39}{11}+t \\z=\frac{29}{11}-2t\end{cases}      (t \in \mathbb{R}) $

Chat chit và chém gió
  • Bão Táp: ts cái mặt em mấy ông k cho vô 9/15/2014 9:09:51 PM
  • Bão Táp: tế này thì đá bóng cái nỗi gì nữa 9/15/2014 9:10:04 PM
  • ♫Lốc♫Xoáy♫: trang mấy ông ý bảo có ck rồi ko cho vô thăm ny 9/15/2014 9:10:14 PM
  • :: hì 9/15/2014 9:10:14 PM
  • ♫Lốc♫Xoáy♫: min cười zề 9/15/2014 9:10:27 PM
  • :: 2ng nc nhé 9/15/2014 9:10:30 PM
  • :: t học đã 9/15/2014 9:10:33 PM
  • :: mai kt mấy môn 9/15/2014 9:10:37 PM
  • :: big_grin 9/15/2014 9:10:37 PM
  • Bão Táp: rolling_on_the_floor 9/15/2014 9:10:39 PM
  • Bão Táp: rolling_on_the_floor 9/15/2014 9:11:36 PM
  • Bão Táp: big_grin 9/15/2014 9:11:48 PM
  • ♫Lốc♫Xoáy♫: rolling_on_the_floor 9/15/2014 9:11:58 PM
  • Bão Táp: may vẫn còn khả năng đb 9/15/2014 9:12:00 PM
  • Bão Táp: devil 9/15/2014 9:12:06 PM
  • Bão Táp: dancing 9/15/2014 9:12:10 PM
  • ♫Lốc♫Xoáy♫: thôi mk cũng hok đã 9/15/2014 9:12:16 PM
  • ♫Lốc♫Xoáy♫: vk ơi ck hok đã nc sau nhé 9/15/2014 9:12:22 PM
  • Bão Táp: crying 9/15/2014 9:12:38 PM
  • Bão Táp: ukm vk tự kỉ vậy 9/15/2014 9:12:51 PM
  • ♫Lốc♫Xoáy♫: tý ck lên 9/15/2014 9:14:16 PM
  • ♫Lốc♫Xoáy♫: ck cho vk đi lên núi ngắm sao 9/15/2014 9:14:28 PM
  • ♫Lốc♫Xoáy♫: nhé 9/15/2014 9:14:30 PM
  • Bão Táp: tongue 9/15/2014 9:15:37 PM
  • ♫Lốc♫Xoáy♫: kiss 9/15/2014 9:19:05 PM
  • Bão Táp: big_grin 9/15/2014 9:19:51 PM
  • Bão Táp: tự kỉ 9/15/2014 9:22:38 PM
  • Bão Táp: mún đi chết ây 9/15/2014 9:22:42 PM
  • Bão Táp: angel 9/15/2014 9:22:49 PM
  • ♫Lốc♫Xoáy♫: sao muốn đi chết ??????? 9/15/2014 9:26:38 PM
  • Bão Táp: chán quá ck ak 9/15/2014 9:27:27 PM
  • Bão Táp: tháng sau thi đội tuyển rùi mà giờ ốm mệt lém thấy cự gạ hoài 9/15/2014 9:27:51 PM
  • Bão Táp: kiểu này để sanglowps 12 thi vậy 9/15/2014 9:28:32 PM
  • Bão Táp: lấy nhìu ưu tiên tính điểm thi tốt nghiệp 9/15/2014 9:28:48 PM
  • Bão Táp: cryingcryingcrying 9/15/2014 9:28:57 PM
  • ♫Lốc♫Xoáy♫: laughing 9/15/2014 9:31:00 PM
  • Bão Táp: cười gì 9/15/2014 9:31:26 PM
  • ♫Lốc♫Xoáy♫: kcj 9/15/2014 9:31:41 PM
  • Bão Táp: crying 9/15/2014 9:32:33 PM
  • ♫Lốc♫Xoáy♫: sao lại khóc 9/15/2014 9:32:55 PM
  • Bão Táp: thì đó 9/15/2014 9:33:05 PM
  • Bão Táp: khóc cho khàn tiếng thêm 9/15/2014 9:33:13 PM
  • Bão Táp: hum qua đã k nói cn đk vs mấy a u19 rùi hum nay thầy cứ gạ thi hoài 9/15/2014 9:34:05 PM
  • Bão Táp: chán khóc cho vui 9/15/2014 9:34:12 PM
  • Bão Táp: crying 9/15/2014 9:34:18 PM
  • ♫Lốc♫Xoáy♫: I_dont_know u19 là cái gì 9/15/2014 9:34:58 PM
  • Bão Táp:9/15/2014 9:35:25 PM
  • ♫Lốc♫Xoáy♫: BĐ là gì 9/15/2014 9:36:11 PM
  • Bão Táp: bóng đá đó ck 9/15/2014 9:36:30 PM
  • Bão Táp: u16 tip xúc quá nhìu rùi 9/15/2014 9:36:51 PM
  • Bão Táp: hum nọ phải đi cầm cờ vs khênh cáng kakakakakakakakakakakakaka 9/15/2014 9:37:06 PM
  • Bão Táp: a ak 9/15/2014 9:37:18 PM
  • Bão Táp: em hỏi k ai pit toàn nào lun 9/15/2014 9:37:32 PM
  • Bão Táp: crying 9/15/2014 9:38:01 PM
  • ♫Lốc♫Xoáy♫: straight_face mấy thằng trẻ trâu biết thế nào đc 9/15/2014 9:38:16 PM
  • ♫Lốc♫Xoáy♫: toàn bọn miệng còn hôi sữa 9/15/2014 9:38:27 PM
  • Bão Táp: tế mà chúng nó đk lên tivi nuôi đk gia đình rùi đó anh 9/15/2014 9:38:49 PM
  • Bão Táp: big_grin 9/15/2014 9:38:59 PM
  • Bão Táp: anh lên trường ĐỊNH CÔNG hỏi là pit 9/15/2014 9:39:12 PM
  • Bão Táp: cryingcryingcrying 9/15/2014 9:39:35 PM
  • ♫Lốc♫Xoáy♫: raised_eyebrows lên làm gì rồi mà để phải về 9/15/2014 9:39:44 PM
  • Bão Táp: đi cho nó khỏe ng 9/15/2014 9:40:04 PM
  • Bão Táp: hìhif 9/15/2014 9:40:06 PM
  • Bão Táp: cn này e lên hn nè 9/15/2014 9:40:22 PM
  • Bão Táp: dancing 9/15/2014 9:40:44 PM
  • ♫Lốc♫Xoáy♫: lên làm gì?????? 9/15/2014 9:40:46 PM
  • Bão Táp: chơi 9/15/2014 9:40:51 PM
  • ♫Lốc♫Xoáy♫: thì lq gì tới ah 9/15/2014 9:41:02 PM
  • Bão Táp: vs ny vs mấy anh trong đội bóng 9/15/2014 9:41:09 PM
  • Bão Táp: có nhu cầu ts thăm ck e lun 9/15/2014 9:41:17 PM
  • Bão Táp: kiss 9/15/2014 9:41:23 PM
  • ♫Lốc♫Xoáy♫: bóng mấy trả báng 9/15/2014 9:41:37 PM
  • ♫Lốc♫Xoáy♫: bánh 9/15/2014 9:41:39 PM
  • ♫Lốc♫Xoáy♫: :3 9/15/2014 9:41:41 PM
  • Bão Táp: hìhif 9/15/2014 9:41:51 PM
  • ♫Lốc♫Xoáy♫: yawn 9/15/2014 9:41:59 PM
  • Bão Táp: em thấy anh ghét bđ thì phải 9/15/2014 9:42:00 PM
  • hey: yawn 9/15/2014 9:42:32 PM
  • ♫Lốc♫Xoáy♫: nhầm rồi ah thích bóng đá 9/15/2014 9:42:32 PM
  • ♫Lốc♫Xoáy♫: ah thích xem bóng đá chứ ko phải ah thích cầu thủ 9/15/2014 9:42:57 PM
  • ♫Lốc♫Xoáy♫: :3 9/15/2014 9:43:01 PM
  • Bão Táp: big_grin 9/15/2014 9:43:52 PM
  • ♫Lốc♫Xoáy♫: cười gì 9/15/2014 9:45:11 PM
  • Bão Táp: k 9/15/2014 9:45:16 PM
  • ♫Lốc♫Xoáy♫: chúc vk đi chơi vui vẻ 9/15/2014 9:45:47 PM
  • ♫Lốc♫Xoáy♫: h ck đi ngủ 9/15/2014 9:47:03 PM
  • ♫Lốc♫Xoáy♫: yawn 9/15/2014 9:47:11 PM
  • Bão Táp: ukm 9/15/2014 9:48:02 PM
  • Bão Táp: ck ngủ ngon 9/15/2014 9:48:05 PM
  • Bão Táp: nao vk khỏe vk cho ck đi leo núi nha 9/15/2014 9:48:16 PM
  • Bão Táp: kiss 9/15/2014 9:48:21 PM
  • ♫Lốc♫Xoáy♫: no_talking ko đi nữa 9/15/2014 9:49:07 PM
  • Bão Táp: èo lại dỗi 9/15/2014 9:49:39 PM
  • Bão Táp: peace_sign 9/15/2014 9:49:50 PM
  • ♫Lốc♫Xoáy♫: waiting ai dỗi 9/15/2014 9:50:13 PM
  • Bão Táp: wavesleepyyawn 9/15/2014 10:01:18 PM
  • hakunzee5897: 2222222222222222 9/15/2014 10:11:01 PM
  • hakunzee5897: cả nhà học tốt nha big_grin 9/15/2014 10:15:14 PM
  • Lã Phụng Tiên: giúp mình với mọi người ơi mai nộp bài rồi cần gấp lắm 9/16/2014 11:19:54 AM
  • Lã Phụng Tiên: http://toan.hoctainha.vn/Hoi-Dap/Cau-Hoi/127136/giup-minh-voi-mai-nop-bai-roi 9/16/2014 11:19:55 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ BQT
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Chuyên Cơ Cuối Cùng
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon98
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • giola_2503
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Faker ^^
  • Angel
  • devilphuong96
  • tqmaries34
  • bontiton96
  • hoang10a5.bc
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • hey
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • Lăn tăn
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • dihoklafdihok
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • fan.arsenalfc
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Không Ai Cả
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • :
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • kto138
  • Hòn Sỏi Buồn
  • teengirl_hn1998
  • trilac2013
  • Windy
  • kuzulies
  • ★.★Hoàng Huy★.★
  • nhoknana95
  • hoctainha
  • langvohue1234
  • fglory2912
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • dangtuan251097
  • c.x.sadhp1999
  • huyhoangfan
  • Duy Phong
  • hattuyetmuadong_banggia
  • mynhi0601
  • hikichbo
  • ndanh9999999
  • thanhtuan885