TÍCH PHÂN HÀM CHỨA CĂN THỨC


I. KIẾN THỨC
Cần nhớ một số công thức tìm nguyên hàm sau :
    - $\int {\frac{{f'(x)}}{{2\sqrt {f(x)} }}dx = \sqrt {f(x)}  + C} $
    - $\int {\frac{1}{{\sqrt {{x^2} + b} }}dx = \ln \left| {x + \sqrt {{x^2} + b} } \right| + C} $
    - Mở rộng : $\int {\frac{{u'(x)}}{{\sqrt {{u^2}(x) + b} }}du = \ln \left| {u(x) + \sqrt {{u^2}(x) + b} } \right|}  + C$

II. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP
1. Tích phân dạng : $I = \int\limits_\alpha ^\beta  {\frac{1}{{\sqrt {{\text{a}}{{\text{x}}^2} + bx}  + c}}dx\quad \left( {a \ne 0} \right)} $

a. Lý thuyết :
Từ : ${\text{f(x) = a}}{{\text{x}}^{\text{2}}} + bx + c = a\left[ {{{\left( {x + \frac{b}{{2a}}} \right)}^2} - \frac{\Delta }{{4{a^2}}}} \right] \Rightarrow \left\{ \begin{array}
  x + \frac{b}{{2a}} = u  \\
  \frac{{\sqrt \Delta  }}{{2a}} = K  \\
\end{array}  \right. \leftrightarrow du = dx$
Khi đó ta có  :
- Nếu $\Delta  < 0,a > 0 \Rightarrow f(x) = a\left( {{u^2} + {k^2}} \right) \Leftrightarrow \sqrt {f(x)}  = \sqrt a .\sqrt {{u^2} + {k^2}} $ (1)
- Nếu : $\Delta  = 0 \Rightarrow f(x) = a{\left( {x + \frac{b}{{2a}}} \right)^2} \Leftrightarrow \left\{ \begin{array}
  a > 0  \\
  \sqrt {f(x)}  = \sqrt a \left| {x + \frac{b}{{2a}}} \right| = \sqrt a .\left| u \right|  \\
\end{array}  \right.$ (2)
- Nếu : $\Delta  > 0$.
    +/ Với a>0 : $f(x) = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) \Leftrightarrow \sqrt {f(x)}  = \sqrt a .\sqrt {\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)} $ (3)
    +/ Với a<0 : $f(x) =  - a\left( {{x_1} - x} \right)\left( {{x_2} - x} \right) \Leftrightarrow \sqrt {f(x)}  = \sqrt { - a} .\sqrt {\left( {{x_1} - x} \right)\left( {{x_2} - x} \right)} $ (4)
Căn cứ vào phân tích trên , ta có một số cách giải sau :

b. Cách giải.
*. Trường hợp : $\Delta  < 0,a > 0 \Rightarrow f(x) = a\left( {{u^2} + {k^2}} \right) \Leftrightarrow \sqrt {f(x)}  = \sqrt a .\sqrt {{u^2} + {k^2}} $
Khi đó đặt :
$\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c}  = t - \sqrt a .x \\
\Rightarrow \left\{ \begin{array}
  bx + c = {t^2} - 2\sqrt a x  \\
  x = \alpha  \to t = {t_0},x = \beta  \to t = {t_1}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x = \frac{{{t^2} - c}}{{b + 2\sqrt a }};dx = \frac{2}{{\left( {b + 2\sqrt a } \right)}}tdt  \\
  t - \sqrt a .x = t - \sqrt a \frac{{{t^2} - c}}{{b + 2\sqrt a }}  \\
\end{array}  \right.$
*. Trường hợp : $\Delta  = 0 \Rightarrow f(x) = a{\left( {x + \frac{b}{{2a}}} \right)^2} \Leftrightarrow \left\{ \begin{array}
  a > 0  \\
  \sqrt {f(x)}  = \sqrt a \left| {x + \frac{b}{{2a}}} \right| = \sqrt a .\left| u \right|  \\
\end{array}  \right.$
Khi đó : $I = \int\limits_\alpha ^\beta  {\frac{1}{{\sqrt a \left| {x + \frac{b}{{2a}}} \right|}}dx = \frac{1}{{\sqrt a }}\int\limits_\alpha ^\beta  {\frac{1}{{\left| {x + \frac{b}{{2a}}} \right|}}dx = \left[ \begin{array}
  \frac{1}{{\sqrt a }}\ln \left( {x + \frac{b}{{2a}}} \right)\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.:x + \frac{b}{{2a}} > 0  \\
   - \frac{1}{{\sqrt a }}\ln \left( {x + \frac{b}{{2a}}} \right)\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.:x + \frac{b}{{2a}} < 0  \\
\end{array}  \right.} } $
*. Trường hợp : $\Delta  > 0,a > 0$
- Đặt : $\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c}  = \sqrt {a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)}  = \left[ \begin{array}
  \left( {x - {x_1}} \right)t  \\
  \left( {x - {x_2}} \right)t  \\
\end{array}  \right.$
*. Trường hợp : $\Delta  > 0,a < 0$
- Đặt : $\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c}  = \sqrt {a\left( {{x_1} - x} \right)\left( {{x_2} - x} \right)}  = \left[ \begin{array}
  \left( {{x_1} - x} \right)t  \\
  \left( {{x_2} - x} \right)t  \\
\end{array}  \right.$

VÍ DỤ MINH HỌA
Ví dụ 1.

Tính tích phân sau : $I = \int\limits_{ - 1}^1 {\frac{{dx}}{{\sqrt {{x^2} - 2x + 5} }}} $. ( a>0 )
Giải
-Ta có : $\Delta ' =  - 4 < 0,a = 1 > 0$
- Đặt : $\sqrt {{x^2} - 2x + 5}  = t - x \Rightarrow t = x + \sqrt {{x^2} - 2x + 5}  \leftrightarrow t - 1 = x - 1 + \sqrt {{x^2} - 2x + 5} $.
$ \Leftrightarrow dt = \left( {1 + \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 5} }}} \right)dx = \frac{t}{{\sqrt {{x^2} - 2x + 5} }}dx \Rightarrow \frac{{dt}}{{t - 1}} = \frac{{dx}}{{\sqrt {{x^2} - 2x + 5} }}$
- Khi : x=-1,t=$\sqrt 8  - 1$,x=1,t=3
 Do đó:$ \Rightarrow I = \int\limits_{ - 1}^1 {\frac{{dx}}{{\sqrt {{x^2} - 2x + 5} }}}  = \int\limits_{2\left( {\sqrt 2  - 1} \right)}^3 {\frac{{dt}}{{t - 1}}} $ Vậy $I = \ln \left| {t - 1} \right|\left| {\begin{array}{*{20}{c}}
  3 \\
  {2\left( {\sqrt 2  - 1} \right)}
\end{array} = \ln \frac{2}{{2\left( {\sqrt 2  - 1} \right)}} = \ln \left( {\sqrt 2  + 1} \right)} \right.$

Ví dụ 2.
Tính tích phân sau . $I = \int\limits_0^2 {\frac{1}{{\sqrt {1 + 2x - {x^2}} }}dx} $. ( a<0 )
Giải
Ta có : $f(x) = \frac{1}{{\sqrt {1 + 2x - {x^2}} }} = \frac{1}{{\sqrt {2 - {{\left( {x - 1} \right)}^2}} }}(*) = \frac{1}{{\sqrt {\left( {\sqrt 2  + 1 - x} \right)\left( {\sqrt 2  - 1 + x} \right)} }}$ .
Nếu theo phương pháp chung thì :
Đặt : $\sqrt {\left( {\sqrt 2  + 1 - x} \right)\left( {\sqrt 2  - 1 + x} \right)}  = \left( {\sqrt 2  + 1 - x} \right)t \Leftrightarrow \left( {\sqrt 2  + 1 - x} \right)\left( {\sqrt 2  - 1 + x} \right) = {t^2}{\left( {\sqrt 2  + 1 - x} \right)^2}$
$ \Leftrightarrow \left( {\sqrt 2  - 1 + x} \right) = \left( {\sqrt 2  + 1 - x} \right){t^2} \Rightarrow x = \frac{{\left( {\sqrt 2  + 1} \right){t^2} - \sqrt 2  + 1}}{{1 + {t^2}}}$. ...
Ta có thể sử dụng phương pháp đổi biến số dạng 1.
Đặt : $x - 1 = \sqrt 2 \sin t \Rightarrow \left\{ \begin{array}
  dx = \sqrt 2 c{\text{ostdt}}{\text{.x = 0}} \to {\text{t =  - }}\frac{\pi }{4};x = 2 \to t = \frac{\pi }{4}  \\
  f(x)dx = \frac{1}{{\sqrt {2\left( {1 - {{\sin }^2}t} \right)} }}\sqrt 2 c{\text{ostdt = dt}}  \\
\end{array}  \right.$. Vì : $t \in \left[ {\frac{\pi }{4};\frac{\pi }{4}} \right] \leftrightarrow c{\text{ost > 0}}$
Vậy : $I = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {dt}  = t\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  { - \frac{\pi }{4}}
\end{array} = \frac{\pi }{4} + \frac{\pi }{4} = \frac{\pi }{2}} \right.$

2. Tích phân dạng : $I = \int\limits_\alpha ^\beta  {\frac{{mx + n}}{{\sqrt {{\text{a}}{{\text{x}}^2} + bx}  + c}}dx\quad \left( {a \ne 0} \right)} $
Phương pháp:

1.  Phân tích $f(x) = \frac{{mx + n}}{{\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }} = \frac{{A.d\left( {\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} } \right)}}{{\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }} + \frac{B}{{\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }}\quad \left( 1 \right)$
2. Quy đồng mẫu số , sau đó đồng nhất hệ số hai tử số để suy ra hệ hai ẩn số A,B
3. Giải hệ tìm A,B thay vào (1)
4. Tính I =$2A\left( {\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} } \right)\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array} + B\int\limits_\alpha ^\beta  {\frac{1}{{\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }}dx} } \right.$ (2)
Trong đó  $\int\limits_\alpha ^\beta  {\frac{1}{{\sqrt {{\text{a}}{{\text{x}}^2} + bx}  + c}}dx\quad \left( {a \ne 0} \right)} $ đã biết cách tính ở trên

VÍ DỤ MINH HỌA
Ví dụ 1.

Tính tích phân sau  $I = \int\limits_{ - 1}^1 {\frac{{x + 2}}{{\sqrt {{x^2} - 2x + 5} }}dx} $. (a>0)
Giải
- Ta có : $f(x) = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + 5} }} = \frac{{A\left( {2x - 2} \right)}}{{\sqrt {{x^2} - 2x + 5} }} + \frac{B}{{\sqrt {{x^2} - 2x + 5} }} = \frac{{2Ax + B - 2A}}{{\sqrt {{x^2} - 2x + 5} }}\;\left( 1 \right)$
- Đồng nhất hệ số hai tử số ta có hệ :
 $\left\{ \begin{array}
  2A = 1  \\
  B - 2A = 2  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = \frac{1}{2}  \\
  B = 3  \\
\end{array}  \right. \Rightarrow f(x) = \frac{{\frac{1}{2}\left( {2x - 2} \right)}}{{\sqrt {{x^2} - 2x + 5} }} + 3\frac{1}{{\sqrt {{x^2} - 2x + 5} }}$
- Vậy : $I = \int\limits_{ - 1}^1 {f(x)dx = } \int\limits_{ - 1}^1 {\frac{{\left( {x - 1} \right)dx}}{{\sqrt {{x^2} - 2x + 5} }} + 3\int\limits_{ - 1}^1 {\frac{1}{{\sqrt {{x^2} - 2x + 5} }}} } dx$.
Theo kết quả trên , ta có kết quả :
$I = \left( {\sqrt {{x^2} - 2x + 5} } \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  { - 1}
\end{array} + 3} \right.\ln \left( {\sqrt 2  + 1} \right) = 2 - 2\sqrt 2  + 3\ln \left( {\sqrt 2  + 1} \right)$

Ví dụ 2.
Tính tích phân sau $I = \int\limits_0^2 {\frac{{2x - 3}}{{\sqrt {1 + 2x - {x^2}} }}dx} $
Giải
Ta có : $\frac{{2x - 3}}{{\sqrt {1 + 2x - {x^2}} }} = \frac{{A\left( {2 - 2x} \right)}}{{\sqrt {1 + 2x - {x^2}} }} + \frac{B}{{\sqrt {1 + 2x - {x^2}} }} = \frac{{ - 2Ax + \left( {2A + B} \right)}}{{\sqrt {1 + 2x - {x^2}} }}$
Đồng nhất hệ số hai tử số ta có : $\left\{ \begin{array}
   - 2A = 2  \\
  2A + B =  - 3  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - 1  \\
  B =  - 1  \\
\end{array}  \right.$
Vậy : $I =  - 2\int\limits_0^2 {\frac{{\left( {1 - x} \right)dx}}{{\sqrt {1 + 2x - {x^2}} }}}  - \int\limits_0^2 {\frac{1}{{\sqrt {1 + 2x - {x^2}} }}dx}  =  - 2\left( {\sqrt {1 + 2x - {x^2}} } \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  0
\end{array} - \int\limits_0^2 {\frac{1}{{\sqrt {1 + 2x - {x^2}} }}dx} \quad \left( 2 \right)} \right.$
Theo kết quả đã tính ở ví dụ trên ta có : $I =  - \frac{\pi }{2}$

Ví dụ 3.
Tính tích phân sau  $I = \int\limits_0^1 {\frac{{\left( {x + 4} \right)dx}}{{\sqrt {{x^2} + 4x + 5} }}} $.
Giải
Ta có : $f(x) = \frac{{\left( {x + 4} \right)}}{{\sqrt {{x^2} + 4x + 5} }} = \frac{{\left( {x + 2} \right)}}{{\sqrt {{x^2} + 4x + 5} }} + \frac{2}{{\sqrt {{x^2} + 4x + 5} }}$
Vậy : $I = \int\limits_0^1 {\frac{{\left( {x + 4} \right)dx}}{{\sqrt {{x^2} + 4x + 5} }}}  = \frac{1}{2}\int\limits_0^1 {\frac{{2\left( {x + 2} \right)dx}}{{\sqrt {{x^2} + 4x + 5} }} + 2\int\limits_0^1 {\frac{1}{{\sqrt {{{\left( {x + 2} \right)}^2} + 1} }}dx} }  = \frac{1}{2}\ln \sqrt {{x^2} + 4x + 1} \left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} + 2J} \right.$ (1)
Tính J : Đặt $t = x + 2 + \sqrt {{{\left( {x + 2} \right)}^2} + 1}  \Rightarrow dt = \left( {1 + \frac{{\left( {x + 2} \right)}}{{\sqrt {{{\left( {x + 2} \right)}^2} + 1} }}} \right)dx = \frac{t}{{\sqrt {{{\left( {x + 2} \right)}^2} + 1} }}dx$
Hay : $\frac{{dt}}{t} = \frac{{dx}}{{\sqrt {{{\left( {x + 2} \right)}^2} + 1} }}$. Khi x=0, t=2+$\sqrt 5 $; x=1, t=3+$\sqrt {10} $.
Do đó : $J = \int\limits_{2 + \sqrt 5 }^{3 + \sqrt {10} } {\frac{{dt}}{t} = \ln \left| t \right|\left| {\begin{array}{*{20}{c}}
  {3 + \sqrt {10} } \\
  {2 + \sqrt 5 }
\end{array}} \right.}  = \ln \left( {\frac{{3 + \sqrt {10} }}{{2 + \sqrt 5 }}} \right)$. Thay vào (1) ta tìm được I
$I = \sqrt {10}  - \sqrt 5  + 2\ln \left( {\frac{{3 + \sqrt {10} }}{{2 + \sqrt 5 }}} \right)$

3. Tích phân dạng : $I = \int\limits_\alpha ^\beta  {\frac{1}{{\left( {mx + n} \right)\sqrt {{\text{a}}{{\text{x}}^2} + bx}  + c}}dx\quad \left( {a \ne 0} \right)} $
Phương pháp:

1. Phân tích: $\frac{1}{{\left( {mx + n} \right)\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }} = \frac{1}{{m\left( {x + \frac{n}{m}} \right)\sqrt {{\text{a}}{{\text{x}}^{\text{2}}} + bx + c} }}$. (1)
2. Đặt : $\frac{1}{y} = x + \frac{n}{m} \Rightarrow \left\{ \begin{array}
  y = \frac{1}{{x + t}}\left( {t = \frac{n}{m}} \right) \to dy =  - \frac{1}{{x + t}}dx  \\
  x = \frac{1}{y} - t \Rightarrow {\text{a}}{{\text{x}}^{\text{2}}} + bx + c = a{\left( {\frac{1}{y} - t} \right)^2} + b\left( {\frac{1}{y} - t} \right) + c  \\
\end{array}  \right.$
3. Thay tất cả vào (1) thì I có dạng : $I =  \pm \int\limits_{\alpha '}^{\beta '} {\frac{{dy}}{{\sqrt {L{y^2} + My + N} }}} $.
Tích phân này chúng ta đã biết cách tính .

VÍ DỤ MINH HỌA
Ví dụ 1.

Tính tích phân sau $\int\limits_2^3 {\frac{{dx}}{{\left( {x - 1} \right)\sqrt { - {x^2} + 2x + 3} }}} $
Giải
Đặt : $x - 1 = \frac{1}{y} \Rightarrow \left\{ \begin{array}
  x = 1 + \frac{1}{y};dx =  - \frac{1}{{{y^2}}}  \\
  x = 2 \to y = 1;x = 3 \to y = \frac{1}{2}  \\
\end{array}  \right.$
Khi đó :
$ - {x^2} + 2x + 3 =  - {\left( {1 + \frac{1}{y}} \right)^2} + 2\left( {1 + \frac{1}{y}} \right) + 3 =  - \frac{1}{{{y^2}}} + 4 = \frac{{4{y^2} - 1}}{{{y^2}}} \Leftrightarrow \sqrt { - {x^2} + 2x + 3}  = \frac{{\sqrt {4{y^2} - 1} }}{{\left| y \right|}}$
Vậy : $I =  - \int\limits_1^{\frac{1}{2}} {\frac{{dy}}{{\sqrt {4{y^2} - 1} }}}  = \frac{1}{2}\int\limits_{\frac{1}{2}}^1 {\frac{{dy}}{{\sqrt {{y^2} - \frac{1}{4}} }} = \frac{1}{2}\ln \left| {y + \sqrt {{y^2} - \frac{1}{4}} } \right|\left| {\begin{array}{*{20}{c}}
  1 \\
  {\frac{1}{2}}
\end{array} = \frac{1}{2}\ln \left( {2 + \sqrt 3 } \right)} \right.} $

Ví dụ 2.
Tính tích phân sau  $\int\limits_0^1 {\frac{{\left( {3x + 2} \right)dx}}{{\left( {x + 1} \right)\sqrt {{x^2} + 3x + 3} }}} $
Giải
- Trước hết ta phân tích :
 $\frac{{\left( {3x + 2} \right)}}{{\left( {x + 1} \right)\sqrt {{x^2} + 3x + 3} }} = \frac{{3\left( {x + 1} \right)}}{{\left( {x + 1} \right)\sqrt {{x^2} + 3x + 3} }} - \frac{1}{{\left( {x + 1} \right)\sqrt {{x^2} + 3x + 3} }}$
$ = \frac{3}{{\sqrt {{x^2} + 3x + 3} }} - \frac{1}{{\left( {x + 1} \right)\sqrt {{x^2} + 3x + 3} }}$
Đáp số : $I = 3\ln \frac{{5 + 2\sqrt 7 }}{{3 + 2\sqrt 3 }} + \ln \frac{{2 + \sqrt 7 }}{{3 + 2\sqrt 3 }}$

4. Tích phân dạng : $I = \int\limits_\alpha ^\beta  {R\left( {x;y} \right)dx = } \int\limits_\alpha ^\beta  {R\left( {x;\sqrt[m]{{\frac{{\alpha x + \beta }}{{\gamma x + \delta }}}}} \right)dx} $
(Trong đó : R(x;y) là hàm số hữu tỷ đối với hai biến số x,y và $\alpha ,\beta ,\gamma ,\delta $ là các hằng số đã biết)
Phương pháp:
1.  Đặt : t=$\sqrt[m]{{\frac{{\alpha x + \beta }}{{\gamma x + \delta }}}}$ (1)
2. Tính x theo t : Bằng cách nâng lũy thừa bậc m hai vế của (1) ta có dạng $x = \varphi \left( t \right)$
3. Tính vi phân hai vế : dx=$\varphi '\left( t \right)dt$ và đổi cận
4. Cuối cùng ta tính : $\int\limits_\alpha ^\beta  {R\left( {x;\sqrt[m]{{\frac{{\alpha x + \beta }}{{\gamma x + \delta }}}}} \right)dx}  = \int\limits_{\alpha '}^{\beta '} {R\left( {\varphi \left( t \right);t} \right)\varphi '\left( t \right)dt} $

VÍ DỤ MINH HỌA
Ví dụ 1.

Tính tích phân sau  $\int\limits_1^2 {\frac{x}{{1 + \sqrt {x - 1} }}} dx$
Giải
- Đặt : $\sqrt {x - 1}  = t \Rightarrow \left\{ \begin{array}
  x = {t^2} + 1;dx = 2tdt;x = 1 \to t = 0,x = 2 \to t = 1  \\
  f(x)dx = \frac{{{t^2} - 1}}{{1 + t}}2tdt = 2\frac{{{t^3} - t}}{{t + 1}}dt = \left( {{t^2} - t - 2 - \frac{2}{{t + 1}}} \right)dt  \\
\end{array}  \right.$
- Vậy : $\int\limits_1^2 {\frac{x}{{1 + \sqrt {x - 1} }}} dx = \int\limits_0^1 {\left( {{t^2} - t - 2 - \frac{2}{{t + 1}}} \right)dt = \frac{{11}}{3} - 4\ln 2} $

Ví dụ 2.
Tính các tích phân sau :
$a.\quad \int\limits_1^2 {\frac{x}{{x + \sqrt {x - 1} }}dx} $            $b.\quad \int\limits_0^{\sqrt 3 } {{x^3}\sqrt {1 + {x^2}} dx} $            $c.\quad \int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} $
$d.\quad \int\limits_0^{\sqrt 3 } {\frac{{{x^5} + 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx} $            $e.\quad \int\limits_{ - 1}^4 {\frac{{2dx}}{{\sqrt {x + 5}  + 4}}} $            $f.\quad \int\limits_0^2 {\frac{{{x^4}}}{{\sqrt {{x^5} + 1} }}dx} $
Giải
$a.\quad \int\limits_1^2 {\frac{x}{{x + \sqrt {x - 1} }}dx} $.
Đặt : $t = \sqrt {x - 1}  \Rightarrow x = {t^2} - 1 \leftrightarrow \left[ \begin{array}
  dx = 2tdt  \\
  x = 1 \to t = 0,x = 2 \to t = 1  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_0^1 {\frac{{{t^2} - 1}}{{{t^2} - 1 + 1}}2tdt = 2\int\limits_0^1 {\left( {t - \frac{1}{t}} \right)dt} } $
Vậy : $I = 2\left( {\frac{1}{2}{t^2} - \ln \left| t \right|} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = } \right.1$
$b.\quad \int\limits_0^{\sqrt 3 } {{x^3}\sqrt {1 + {x^2}} dx}  = \int\limits_0^{\sqrt 3 } {{x^2}\sqrt {1 + {x^2}} xdx} $.
Đặt : $t = \sqrt {1 + {x^2}}  \Rightarrow {x^2} = {t^2} - 1 \leftrightarrow \left[ \begin{array}
  xdx = tdt  \\
  x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^2 {\left( {{t^2} - 1} \right){t^2}dt} $
Vậy : $I = \int\limits_1^2 {\left( {{t^4} - {t^2}} \right)dt}  = \left( {\frac{1}{5}{t^5} - \frac{1}{3}{t^3}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{58}}{{15}}$
$c.\quad \int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} $.
Đặt : $t = \sqrt {1 - x}  \Rightarrow x = 1 - {t^2} \leftrightarrow \left[ \begin{array}
  dx =  - 2tdt  \\
  x = 1 \to t = 0,x = 9 \to t =  - 2  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_0^{ - 2} {\left( {1 - {t^2}} \right)t.\left( { - 2tdt} \right)} $
Vậy : $I = 2\int\limits_{ - 2}^0 {\left( {{t^2} - {t^4}} \right)dt = } 2\left( {\frac{1}{3}{t^3} - \frac{1}{5}{t^5}} \right)\left| {\begin{array}{*{20}{c}}
  0 \\
  { - 2}
\end{array} = } \right. - \frac{{112}}{{15}}$
$d.\quad \int\limits_0^{\sqrt 3 } {\frac{{{x^5} + 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx}  = \int\limits_0^{\sqrt 3 } {\frac{{{x^2}\left( {{x^2} + 2} \right)xdx}}{{\sqrt {{x^2} + 1} }}} $
Đặt : $t = \sqrt {{x^2} + 1}  \Rightarrow \left[ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt  \\
  x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^2 {\frac{{\left( {{t^2} - 1} \right)\left( {{t^2} + 1} \right)t.2tdt}}{t}}  = 2\int\limits_1^2 {\left( {{t^4} - 1} \right)tdt} $
Vậy : $I = 2\left( {\frac{1}{5}{t^5} - \frac{1}{2}{t^2}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{59}}{5}$
$e.\quad \int\limits_{ - 1}^4 {\frac{{2dx}}{{\sqrt {x + 5}  + 4}}} $.
Đặt : $t = \sqrt {x + 5}  \Rightarrow \left[ \begin{array}
  x = {t^2} - 5,dx = 2tdt  \\
  x =  - 1 \to t = 2,x = 4 \to t = 3  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_2^3 {\frac{{2.2tdt}}{{t + 4}} = 4\int\limits_2^3 {\left( {1 - \frac{4}{{t + 4}}dt} \right)} } $
Vậy : $I = 4\left( {t - 4\ln \left| {t + 4} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = } \right.4 + 4\left( {\ln 6 - \ln 7} \right) = 4 + 4\ln \frac{6}{7}$
$f.\quad \int\limits_0^2 {\frac{{{x^4}}}{{\sqrt {{x^5} + 1} }}dx}  = \frac{1}{5}\int\limits_0^2 {\frac{{d\left( {{x^5} + 1} \right)}}{{\sqrt {{x^5} + 1} }} = \frac{2}{5}\sqrt {{x^5} + 1} \left| {\begin{array}{*{20}{c}}
  2 \\
  0
\end{array} = \frac{2}{5}\left( {\sqrt {33}  - 1} \right)} \right.} $

Ví dụ 3.
Tính các tích phân sau :
$a.\quad \int\limits_0^1 {{x^5}\sqrt {1 - {x^2}} dx} $        $b.\quad \int\limits_0^{\sqrt 3 } {\sqrt {1 + {x^2}} .{x^3}dx} $        $c.\quad \int\limits_0^2 {{x^2}\sqrt {4 - {x^2}} dx} $
$d.\quad \int\limits_1^2 {\frac{{xdx}}{{\sqrt {2 + x}  + \sqrt {2 - x} }}} $        $e.\quad \int\limits_{ - 1}^0 {x\sqrt {1 + x} } dx$        $f.\quad \int\limits_0^1 {{x^3}\sqrt {{x^2} + 3} } dx$
Giải
$a.\quad \int\limits_0^1 {{x^5}\sqrt {1 - {x^2}} dx}  = \int\limits_0^1 {{x^4}\sqrt {1 - {x^2}} xdx} $
Đặt : $t = \sqrt {1 - {x^2}}  \Rightarrow \left[ \begin{array}
  {x^2} = 1 - {t^2};xdx =  - tdt  \\
  x = 0 \to t = 1,x = 1 \to t = 0  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^0 {{{\left( {1 - {t^2}} \right)}^2}t.\left( { - tdt} \right) = \int\limits_0^1 {{t^2}\left( {{t^4} - 2{t^2} + 1} \right)dt} } $
Vậy : $I = \left( {\frac{1}{7}{t^7} - \frac{2}{5}{t^5} + \frac{1}{3}{t^3}} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{8}{{105}}} \right.$
$b.\quad \int\limits_0^{\sqrt 3 } {\sqrt {1 + {x^2}} .{x^3}dx}  = \int\limits_0^{\sqrt 3 } {{x^2}\sqrt {1 + {x^2}} xdx} $
Đặt : $t = \sqrt {1 + {x^2}}  \Rightarrow \left[ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt  \\
  x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^2 {\left( {{t^2} - 1} \right)t.tdt = \int\limits_1^2 {\left( {{t^4} - {t^2}} \right)dt} } $
Vậy : $I = \left( {\frac{1}{5}{t^5} - \frac{1}{3}{t^3}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{58}}{{15}}$
$c.\quad \int\limits_0^2 {{x^2}\sqrt {4 - {x^2}} dx} $.
Đặt : $x = 2\sin t \Rightarrow \left[ \begin{array}
  dx = 2c{\text{ost}}dt;\sqrt {4 - {x^2}}  - c{\text{ost}}  \\
  {\text{x = 0}} \to {\text{t = 0}}{\text{.x = 2}} \to {\text{t = }}\frac{\pi }{2}  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_0^{\frac{\pi }{2}} {4{{\sin }^2}t.2\cos t.2\cos tdt = \int\limits_0^{\frac{\pi }{2}} {4{{\sin }^2}2tdt} } $
Vậy : $I = \int\limits_0^{\frac{\pi }{2}} {\left( {1 - c{\text{os4t}}} \right)dt = \left( {t - \frac{1}{4}\sin 4t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  0
\end{array} = } \right.} \frac{\pi }{2}$
$d.\quad \int\limits_1^2 {\frac{{xdx}}{{\sqrt {2 + x}  + \sqrt {2 - x} }}}  = \frac{1}{2}\int\limits_1^2 {\left( {\sqrt {2 + x}  - \sqrt {2 - x} } \right)dx}  = \frac{1}{2}\left[ {\int\limits_1^2 {{{\left( {2 + x} \right)}^{\frac{1}{2}}} - {{\left( {2 - x} \right)}^{\frac{1}{2}}}} } \right]dx$
- Vậy : $I = \frac{1}{2}\left[ {\frac{2}{3}{{\left( {2 + x} \right)}^{\frac{3}{2}}} + \frac{2}{3}{{\left( {2 - x} \right)}^{\frac{3}{2}}}} \right]\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{22}}{9} - \sqrt 3 $
$e.\quad \int\limits_{ - 1}^0 {x\sqrt {1 + x} } dx$
Đặt : $t = \sqrt {1 + x}  \Rightarrow \left[ \begin{array}
  x = {t^2} - 1;dx = 2tdt  \\
  x =  - 1 \to t = 0,x = 0 \to t = 1  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_0^1 {\left( {{t^2} - 1} \right)t.2tdt = 2\int\limits_0^1 {\left( {{t^4} - {t^2}} \right)dt} } $
Vậy : $I = 2\left( {\frac{1}{5}{t^5} - \frac{1}{3}{t^3}} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = 2\left( {\frac{1}{5} - \frac{1}{3}} \right) =  - \frac{4}{{15}}} \right.$
$f.\quad \int\limits_0^1 {{x^3}\sqrt {{x^2} + 3} } dx = \int\limits_0^1 {{x^2}\sqrt {{x^2} + 3} .xdx} $
Đặt : $t = \sqrt {{x^2} + 3}  \Rightarrow \left[ \begin{array}
  {x^2} = {t^2} - 3;xdx = tdt  \\
  x = 0 \to t = \sqrt 3 ,x = 1 \to t = 2  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_{\sqrt 3 }^2 {\left( {{t^2} - 1} \right)t.tdt = \int\limits_{\sqrt 3 }^2 {\left( {{t^4} - {t^2}} \right)dt} } $
Vậy : $I = \left( {\frac{1}{5}{t^5} - \frac{1}{3}{t^3}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  {\sqrt 3 }
\end{array} = } \right.\frac{{56 - 12\sqrt 3 }}{{15}}$

Ví dụ 4.

Tính các tích phân sau :
$a.\quad \int\limits_{ - 1}^3 {\frac{{x - 3}}{{3\sqrt {x + 1}  + x + 3}}} dx$        $b.\quad \int\limits_5^{10} {\frac{{dx}}{{x - 2\sqrt {x - 1} }}} $
$c.\quad \int\limits_0^1 {\frac{{{x^2} + x}}{{\sqrt[3]{{{{\left( {x + 1} \right)}^2}}}}}dx} $            $d.\quad \int\limits_0^{\sqrt 3 } {{x^5}\sqrt {{x^2} + 1} dx} $        $e.\quad \int\limits_0^1 {{x^3}\sqrt {1 - {x^2}} dx} $
Giải
$a.\quad \int\limits_{ - 1}^3 {\frac{{x - 3}}{{3\sqrt {x + 1}  + x + 3}}} dx$
Đặt : $t = \sqrt {x + 1}  \Rightarrow x = {t^2} - 1 \Leftrightarrow \left[ \begin{array}
  dx = 2tdt  \\
  x =  - 1 \to t = 0;x = 3 \to t = 2  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^2 {\frac{{{t^2} - 4}}{{{t^2} + 3t + 2}}2tdt = 2\int\limits_0^2 {\frac{{t\left( {t - 2} \right)\left( {t - 2} \right)}}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt = 2\int\limits_0^2 {\left( {t - 3 + \frac{3}{{t + 2}}} \right)dt} } }  = 2\left( {\frac{1}{2}{t^2} - 3t + 3\ln \left| {t + 2} \right|} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  0
\end{array}} \right.$
Do đó : I$ = 6\ln 2 - 8$
$b.\quad \int\limits_5^{10} {\frac{{dx}}{{x - 2\sqrt {x - 1} }}}  = \int\limits_5^{10} {\frac{{dx}}{{x - 1 - 2\sqrt {x - 1}  + 1}} = } \int\limits_5^{10} {\frac{{dx}}{{{{\left( {\sqrt {x - 1}  - 1} \right)}^2}}}} $
Đặt : $t = \sqrt {x - 1}  \Rightarrow \left\{ \begin{array}
  x = {t^2} + 1;dx = 2tdt.x = 5 \to t = 2;x = 10 \to t = 3  \\
  f(x)dx = \frac{{dx}}{{{{\left( {\sqrt {x - 1}  - 1} \right)}^2}}} = \frac{{2tdt}}{{{{\left( {t - 1} \right)}^2}}} = 2\left( {\frac{1}{{t - 1}} + \frac{1}{{{{\left( {t - 1} \right)}^2}}}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_5^{10} {f(x)dx}  = \int\limits_2^3 {2\left( {\frac{1}{{t - 1}} + \frac{1}{{{{\left( {t - 1} \right)}^2}}}} \right)dt = 2\left( {\ln \left| {t - 1} \right| - \frac{1}{{t - 1}}} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = 2\ln 2 + 1} \right.} $
$c.\quad \int\limits_0^1 {\frac{{{x^2} + x}}{{\sqrt[3]{{{{\left( {x + 1} \right)}^2}}}}}dx}  = \int\limits_0^1 {\frac{{x\left( {x + 1} \right)dx}}{{\sqrt[3]{{{{\left( {x + 1} \right)}^2}}}}}}  = \int\limits_0^1 {\frac{{x\sqrt[3]{{{{\left( {x + 1} \right)}^3}}}dx}}{{\sqrt[3]{{{{\left( {x + 1} \right)}^2}}}}} = \int\limits_0^1 {x\sqrt[3]{{x + 1}}dx} } $ (1)
Đặt : $t = \sqrt[3]{{x + 1}} \Rightarrow \left\{ \begin{array}
  x = {t^3} - 1,dx = 3{t^2}dt.x = 0 \to t = 1;x = 1 \to t = \sqrt[3]{2}  \\
  f(x)dx = x\sqrt[3]{{x + 1}}dx = \left( {{t^3} - 1} \right)t.3{t^2}dt = \left( {3{t^6} - 3{t^3}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^1 {f(x)dx}  = \int\limits_1^{\sqrt[3]{2}} {\left( {3{t^6} - 3{t^3}} \right)dt}  = \left( {\frac{3}{7}{t^7} - \frac{3}{4}{t^4}} \right)\left| {\begin{array}{*{20}{c}}
  {\sqrt[3]{2}} \\
  1
\end{array} = \frac{{3\sqrt[3]{2}}}{{14}} + \frac{9}{{28}}} \right.$
$d.\quad \int\limits_0^{\sqrt 3 } {{x^5}\sqrt {{x^2} + 1} dx}  = \int\limits_0^{\sqrt 3 } {{x^4}\sqrt {{x^2} + 1} xdx} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {{x^2} + 1}  \Rightarrow {x^2} = {t^2} - 1 \Leftrightarrow \left\{ \begin{array}
  xdx = tdt.x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
  f(x)dx = {x^4}\sqrt {{x^2} + 1} xdx = {\left( {{t^2} - 1} \right)^2}.tdt = \left( {{t^5} - 2{t^3} + t} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^{\sqrt 3 } {{x^4}\sqrt {{x^2} + 1} xdx}  = \int\limits_1^2 {\left( {{t^5} - 2{t^3} + t} \right)dt = \left( {\frac{1}{6}{t^6} - \frac{1}{2}{t^4} + \frac{1}{2}{t^2}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{9}{2}} \right.} $
$e.\quad \int\limits_0^1 {{x^3}\sqrt {1 - {x^2}} dx}  = \int\limits_0^1 {{x^2}\sqrt {1 - {x^2}} xdx} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {1 - {x^2}}  \Rightarrow \left\{ \begin{array}
  {x^2} = 1 - {t^2};xdx =  - tdt.x = 0 \to t = 1,x = 1 \to t = 0  \\
  f(x)dx = {x^2}\sqrt {1 - {x^2}} xdx = \left( {1 - {t^2}} \right)t\left( { - tdt} \right) =  - \left( {{t^2} - {t^4}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^1 {{x^2}\sqrt {1 - {x^2}} xdx}  = \int\limits_1^0 { - \left( {{t^2} - {t^4}} \right)dt}  = \int\limits_0^1 {\left( {{t^2} - {t^4}} \right)dt}  = \left( {\frac{1}{3}{t^3} - \frac{1}{5}{t^5}} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{2}{{15}}} \right.$

Ví dụ 5.

Tính các tích phân sau
1. $\int\limits_0^1 {\frac{{{x^2} - 1}}{{\sqrt x  + 1}}dx} $                           2. $\int\limits_{\frac{2}{{\sqrt 3 }}}^{\sqrt 2 } {\frac{{dx}}{{x\sqrt {{x^2} - 1} }}} $
3. $\int\limits_0^{\frac{7}{3}} {\frac{{x + 1}}{{\sqrt[3]{{3x + 1}}}}dx} $                     4. $\int\limits_{ - 2}^{ - \sqrt 2 } {\frac{{{x^2} + 1}}{{x\sqrt {{x^2} + 1} }}dx} $ (
Giải
1. $\int\limits_0^1 {\frac{{{x^2} - 1}}{{\sqrt x  + 1}}dx} $ .
Ta có :$f(x) = \frac{{{x^2} - 1}}{{\sqrt x  + 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {\sqrt x  - 1} \right)}}{{x - 1}} = \left( {x + 1} \right)\left( {\sqrt x  - 1} \right) = x\sqrt x  + \sqrt x  - x - 1$
Vậy : $I = \int\limits_0^1 {f(x)dx}  = \int\limits_0^1 {\left( {x\sqrt x  + \sqrt x  - x - 1} \right)dx}  = \left( {\frac{2}{5}{x^2}\sqrt x  + \frac{2}{3}x\sqrt x  - \frac{1}{2}{x^2} - x} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{1}{{15}}} \right.$
2. $\int\limits_{\frac{2}{{\sqrt 3 }}}^{\sqrt 2 } {\frac{{dx}}{{x\sqrt {{x^2} - 1} }}}  = \int\limits_{\frac{2}{{\sqrt 3 }}}^{\sqrt 2 } {\frac{{xdx}}{{{x^2}\sqrt {{x^2} - 1} }}\quad \left( 1 \right)} $ 
Đặt : $t = \sqrt {{x^2} - 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} + 1,xdx = tdt.x = \frac{2}{{\sqrt 3 }} \to t = \frac{1}{{\sqrt 3 }},x = \sqrt 2  \to t = 1  \\
  f(x)dx = \frac{{xdx}}{{{x^2}\sqrt {{x^2} - 1} }} = \frac{{tdt}}{{\left( {{t^2} + 1} \right)t}} = \frac{{dt}}{{{t^2} + 1}}  \\
\end{array}  \right.$
Vậy :$I = \int\limits_{\frac{2}{{\sqrt 3 }}}^{\sqrt 2 } {\frac{{dx}}{{x\sqrt {{x^2} - 1} }}}  = \int\limits_{\frac{1}{{\sqrt 3 }}}^1 {\frac{{dt}}{{{t^2} + 1}}}  = acr\tan t\left| {\begin{array}{*{20}{c}}
  1 \\
  {\frac{1}{{\sqrt 3 }}}
\end{array} = \frac{\pi }{4} - \frac{\pi }{6} = \frac{\pi }{{12}}} \right.$ 
3. $\int\limits_0^{\frac{7}{3}} {\frac{{x + 1}}{{\sqrt[3]{{3x + 1}}}}dx} $ .
Đặt : $t = \sqrt[3]{{3x + 1}} \Rightarrow \left\{ \begin{array}
  x = \frac{{{t^3} - 1}}{3},dx = {t^2}dt,x = 0 \to t = 1;x = \frac{7}{3} \to t = 2  \\
  f(x)dx = \frac{{x + 1}}{{\sqrt[3]{{3x + 1}}}}dx = \frac{{{t^3} + 2}}{{3t}}{t^2}dt = \frac{1}{3}\left( {{t^4} + 2t} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^{\frac{7}{3}} {\frac{{x + 1}}{{\sqrt[3]{{3x + 1}}}}dx}  = \int\limits_1^2 {\frac{1}{3}\left( {{t^4} + 2t} \right)dt}  = \frac{1}{3}\left( {\frac{1}{5}{t^5} + {t^2}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{46}}{{15}}$
4. $\int\limits_{ - 2}^{ - \sqrt 2 } {\frac{{{x^2} + 1}}{{x\sqrt {{x^2} + 1} }}dx}  = \int\limits_{ - 2}^{ - \sqrt 2 } {\frac{{\sqrt {{x^2} + 1} }}{{{x^2}}}xdx} {\text{ }}\left( {\text{1}} \right)$
Đặt : $t = \sqrt {{x^2} + 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} - 1 \leftrightarrow xdx = tdt.x =  - 2 \to t = \sqrt 5 ,x =  - \sqrt 2  \to t = \sqrt 3   \\
  f(x)dx = \frac{{\sqrt {{x^2} + 1} }}{{{x^2}}}xdx = \frac{t}{{{t^2} - 1}}tdt = \left( {1 + \frac{1}{{{t^2} - 1}}} \right)dt = \left( {1 + \frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right)dt  \\
\end{array}  \right.$
Vậy : $\int\limits_{ - 2}^{ - \sqrt 2 } {f(x)dx}  = \int\limits_{\sqrt 5 }^{\sqrt 3 } {\left[ {1 + \frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right]dt} \\ = \left( {t + \frac{1}{2}\ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right)\left| {\begin{array}{*{20}{c}}
  {\sqrt 3 } \\
  {\sqrt 5 }
\end{array} = \sqrt 3  - \sqrt 5  + \frac{1}{2}\ln \frac{{\left( {\sqrt 3  - 1} \right)\left( {\sqrt 5  + 1} \right)}}{{\left( {\sqrt 3  + 1} \right)\left( {\sqrt 5  - 1} \right)}}} \right.$

BÀI TẬP TỰ GIẢI
$\int\limits_0^1 {\frac{{5x - 3}}{{\sqrt {2{x^2} + 8x + 1} }}dx} $                $\int\limits_{\frac{7}{2}}^4 {\frac{{3x + 4}}{{\sqrt { - {x^2} + 6x + 8} }}dx} $
$\int\limits_0^a {{x^2}\sqrt {{a^2} - {x^2}} dx} $                $\int\limits_0^1 {\frac{{dx}}{{{{\left( {x + \sqrt {1 + {x^2}} } \right)}^2}}}} $
$\int\limits_{\sqrt[3]{2}}^1 {\sqrt[4]{{1 + {x^3}}}\frac{{dx}}{x}} $                    $\int\limits_1^{\sqrt 3 } {\frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx} $
$\int\limits_1^a {\frac{{\sqrt {{x^2} + {a^2}} }}{x}dx} $                    $\int\limits_0^{\sqrt 3 } {\frac{{\sqrt {1 + {x^6}} }}{x}dx} $
$\int\limits_1^2 {\frac{{\sqrt {{x^3} + 1} }}{{{x^4}}}dx} $                    $\int\limits_0^{\frac{\pi }{8}} {\frac{{dx}}{{\sqrt {1 + x}  + \sqrt {1 - x} }}} $

cảm ơn thầy vì bài giảng! –  harrypotter_yb2010 19-05-13 03:07 PM

Thẻ

Lượt xem

53906
Chat chit và chém gió
  • Thiên Thu: cj có bị cận k đấy 7/28/2017 7:42:44 AM
  • ๖ۣۜDämonღ:sad 7/28/2017 7:42:49 AM
  • ๖ۣۜDämonღ: làm sao? sad 7/28/2017 7:42:56 AM
  • Thiên Thu: chắc do xem film ấylaughing 7/28/2017 7:43:11 AM
  • Ryo: sao a xem đêm miết trong tối nữa mà ko bị cận 7/28/2017 7:43:23 AM
  • Thiên Thu: a xem film ấy, trong đêm luôn hả? 7/28/2017 7:43:48 AM
  • ๖ۣۜSầu: xem cái này chưa 7/28/2017 7:43:53 AM
  • ๖ۣۜSầu: https://www.youtube.com/watch?v=S_LwKVfzv64 7/28/2017 7:43:55 AM
  • Ryo: @@ 7/28/2017 7:43:56 AM
  • Ryo: phim ấy 7/28/2017 7:43:58 AM
  • Thiên Thu: haha 7/28/2017 7:44:05 AM
  • Ryo: a coi phim hành động thui 7/28/2017 7:44:07 AM
  • Thiên Thu: thế mà cx nói 7/28/2017 7:44:12 AM
  • ๖ۣۜDämonღ: đậu -.- 7/28/2017 7:44:19 AM
  • Thiên Thu: e đọc truyện có bị cận đâu 7/28/2017 7:44:19 AM
  • Ryo: laughing 7/28/2017 7:44:22 AM
  • ๖ۣۜSầu: https://www.youtube.com/watch?v=S_LwKVfzv64 7/28/2017 7:44:24 AM
  • ๖ۣۜDämonღ: em đang xem cái gì thế Tùng? 7/28/2017 7:44:26 AM
  • ๖ۣۜSầu: rolling_on_the_floor 7/28/2017 7:44:29 AM
  • ๖ۣۜSầu: cái của trắng tv mà 7/28/2017 7:44:44 AM
  • ๖ۣۜDämonღ: vch -.- 7/28/2017 7:45:11 AM
  • ๖ۣۜDämonღ: trang này xàm vl 7/28/2017 7:45:15 AM
  • ๖ۣۜSầu: rolling_on_the_floor 7/28/2017 7:45:27 AM
  • Thiên Thu: thinking 7/28/2017 7:46:11 AM
  • Snowflakes : . 7/28/2017 7:59:09 AM
  • Snowflakes : . 7/28/2017 8:08:07 AM
  • Snowflakes : . 7/28/2017 8:08:09 AM
  • Snowflakes : ..... 7/28/2017 8:08:14 AM
  • Snowflakes : . 7/28/2017 8:08:15 AM
  • Snowflakes : . 7/28/2017 8:08:15 AM
  • Snowflakes : . 7/28/2017 8:08:16 AM
  • Snowflakes : . 7/28/2017 8:08:17 AM
  • Snowflakes : . 7/28/2017 8:08:17 AM
  • Snowflakes : . 7/28/2017 8:08:18 AM
  • Snowflakes : . 7/28/2017 8:08:19 AM
  • Snowflakes : . 7/28/2017 8:08:19 AM
  • Snowflakes : . 7/28/2017 8:08:20 AM
  • Snowflakes : . 7/28/2017 8:08:20 AM
  • Snowflakes : ... 7/28/2017 8:08:22 AM
  • Snowflakes : . 7/28/2017 8:08:22 AM
  • Snowflakes : . 7/28/2017 8:08:23 AM
  • Snowflakes : . 7/28/2017 8:08:24 AM
  • Snowflakes : . 7/28/2017 8:08:24 AM
  • Snowflakes : . 7/28/2017 8:08:25 AM
  • Snowflakes : . 7/28/2017 8:08:25 AM
  • Snowflakes : . 7/28/2017 8:08:26 AM
  • Snowflakes : . 7/28/2017 8:08:27 AM
  • Snowflakes : . 7/28/2017 8:08:28 AM
  • Snowflakes : . 7/28/2017 8:08:28 AM
  • Snowflakes : . 7/28/2017 8:08:29 AM
  • Snowflakes : . 7/28/2017 8:08:30 AM
  • Snowflakes : . 7/28/2017 8:08:31 AM
  • Snowflakes : . 7/28/2017 8:08:32 AM
  • Snowflakes : . 7/28/2017 8:08:32 AM
  • Snowflakes : yawn 7/28/2017 8:08:46 AM
  • Ryo: spam 7/28/2017 8:12:14 AM
  • Ryo: đcm rảnh vc 7/28/2017 8:12:18 AM
  • Snowflakes : chán big_grin 7/28/2017 8:12:30 AM
  • Snowflakes : tìm 3 vòng ko cvos ai 7/28/2017 8:12:42 AM
  • Ryo: yawn 7/28/2017 8:12:46 AM
  • Snowflakes : straight_face 7/28/2017 8:13:50 AM
  • birminghamcommunity: big_grin 7/28/2017 8:16:03 AM
  • birminghamcommunity: Heey buddy :V 7/28/2017 8:16:15 AM
  • Ryo: yawn 7/28/2017 8:16:55 AM
  • birminghamcommunity: rolling_on_the_floor 7/28/2017 8:17:02 AM
  • birminghamcommunity: Chào caccau 7/28/2017 8:17:09 AM
  • birminghamcommunity: Ryo :V 7/28/2017 8:17:16 AM
  • ๖ۣۜDämonღ: tiếng gì thế? sad 7/28/2017 8:17:25 AM
  • Ryo: yawn 7/28/2017 8:18:34 AM
  • Snowflakes : birminghamcommunity - viết đc cái tên giảm thọ 7/28/2017 8:18:42 AM
  • birminghamcommunity: happy 7/28/2017 8:19:58 AM
  • birminghamcommunity: ? 7/28/2017 8:20:02 AM
  • birminghamcommunity: #Ryo icon đó quài không chán à :3 7/28/2017 8:20:18 AM
  • ๖ۣۜDämonღ: yawn 7/28/2017 8:21:39 AM
  • birminghamcommunity: -_- 7/28/2017 8:21:54 AM
  • birminghamcommunity: Pipi caccau big_grin ngủ ngon nhé <3 7/28/2017 8:22:11 AM
  • ๖ۣۜDämonღ: vĩnh biệt 7/28/2017 8:23:18 AM
  • ๖ۣۜDämonღ: đi thanh thản nhé ~~ 7/28/2017 8:23:24 AM
  • Snowflakes : . 7/28/2017 8:25:29 AM
  • Ryo: yawn 7/28/2017 8:31:20 AM
  • ๖ۣۜJinღ๖ۣۜKaido: laughing 7/28/2017 8:45:10 AM
  • galaxy: straight_face 7/28/2017 8:45:47 AM
  • Snowflakes : . 7/28/2017 8:53:00 AM
  • birminghamcommunity: ............> 7/28/2017 8:53:26 AM
  • birminghamcommunity: Chao bạn :v 7/28/2017 8:53:37 AM
  • Snowflakes : hờ 7/28/2017 8:55:52 AM
  • Snowflakes : chào yawn 7/28/2017 8:56:00 AM
  • Snowflakes : bn tên j z 7/28/2017 8:58:28 AM
  • ๖ۣۜGió: wave 7/28/2017 9:12:11 AM
  • galaxy: bao nhiêu cú đêm đây 7/28/2017 9:13:17 AM
  • ๖ۣۜGió: big_grin 7/28/2017 9:13:32 AM
  • Snowflakes : winking 7/28/2017 9:14:55 AM
  • birminghamcommunity: Thở rolling_on_the_floor 7/28/2017 9:15:07 AM
  • Snowflakes : rolling_on_the_floor 7/28/2017 9:15:09 AM
  • birminghamcommunity: chào caccau happy 7/28/2017 9:15:15 AM
  • ๖ۣۜGió: rolling_on_the_floor 7/28/2017 9:15:40 AM
  • birminghamcommunity: caccau có thể giúp mình đ.c khôg 7/28/2017 9:17:01 AM
  • birminghamcommunity: bài mình đăng ấy ^^ 7/28/2017 9:17:08 AM
  • birminghamcommunity: sad không còn ai? 7/28/2017 9:30:57 AM
  • Snowflakes : . 7/28/2017 9:42:59 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • Lỗi
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • Thìn
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • phanthilanphuong2011
  • vuthuytrang.ch2609
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Lục Diệp Tử
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trangg"xxx Kiềuu"xxx
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • Hoàng Yến
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • Quỳnh
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ⊰๖ۣۜNgốc๖ۣۜ ⊱
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ༉๖ۣۜ Këy࿐
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Lành
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • -
  • Nhok Sam
  • Nguyễn Đức Minh
  • Ryo
  • sin^2 (B)
  • cụ nhỏ
  • Update
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Su Su
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • trinh2005
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • Tiểu Công Tử
  • net.sonicz
  • Huyền Kute
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • cos^2(T)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • kemetao
  • lananhtranthi19
  • Băng
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • Snowflakes