TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ CÓ MẪU LÀ ĐA THỨC BẬC THẤP


A. DẠNG : I=$\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{ax + b}}}}dx\quad \left( {a \ne 0} \right)} $
Chú ý đến công thức : $\int\limits_\alpha ^\beta  {\frac{m}{{{\text{ax + b}}}}dx}  = \frac{m}{a}\ln \left| {{\text{ax + b}}} \right|\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$.
Và nếu bậc của P(x) cao hơn hoắc bằng 2 thì ta chia tử cho mẫu dẫn đến  $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{ax + b}}}}dx = \int\limits_\alpha ^\beta  {Q(x) + \frac{m}{{{\text{ax + b}}}}dx = \int\limits_\alpha ^\beta  {Q(x)dx}  + m\int\limits_\alpha ^\beta  {\frac{1}{{{\text{ax + b}}}}dx} \quad } \quad } $

Ví dụ 1 :
Tính tích phân : I= $\int\limits_1^2 {\frac{{{x^3}}}{{2x + 3}}dx} $
Giải
Ta có : $f(x) = \frac{{{x^3}}}{{2x + 3}} = \frac{1}{2}{x^2} - \frac{3}{4}x + \frac{9}{8} - \frac{{27}}{8}\frac{1}{{2x + 3}}$
Do đó : $\int\limits_1^2 {\frac{{{x^3}}}{{2x + 3}}dx}  = \int\limits_1^2 {\left( {\frac{1}{2}{x^2} - \frac{3}{4}x + \frac{9}{8} - \frac{{27}}{8}\frac{1}{{2x + 3}}} \right)dx} $
$ = \left( {\frac{1}{3}{x^3} - \frac{3}{8}{x^2} + \frac{9}{8}x - \frac{{27}}{{16}}\ln \left| {2x + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right. - \frac{{13}}{6} - \frac{{27}}{{16}}\ln 35$

Ví dụ 2:
Tính tích phân : I= $\int\limits_{\sqrt 5 }^3 {\frac{{{x^2} - 5}}{{x + 1}}dx} $
Giải
Ta có : f(x)=$\frac{{{x^2} - 5}}{{x + 1}} = x - 1 - \frac{4}{{x + 1}}$.
Do đó : $\int\limits_{\sqrt 5 }^3 {\frac{{{x^2} - 5}}{{x + 1}}dx}  = \int\limits_{\sqrt 5 }^3 {\left( {x - 1 - \frac{4}{{x + 1}}} \right)dx}  = \left( {\frac{1}{2}{x^2} - x - 4\ln \left| {x + 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 5 }
\end{array} = } \right.\sqrt 5  - 1 + 4\ln \left( {\frac{{\sqrt 5  + 1}}{4}} \right)$

B. DẠNG : $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{a}}{{\text{x}}^{\text{2}}} + bx + c}}dx} $
1. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ có hai nghiệm phân biệt

Công thức cần lưu ý : $\int\limits_\alpha ^\beta  {\frac{{u'(x)}}{{u(x)}}dx}  = \ln \left| {u(x)} \right|\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$
Ta có hai cách
Cách 1: Hệ số bất định
Cách 2: Hạ bậc

Ví dụ 3:
Tính tích phân : I= $\int\limits_0^1 {\frac{{4x + 11}}{{{x^2} + 5x + 6}}dx} $.
Giải
Cách 1: ( Hệ số bất định )
Ta có : f(x)=$\frac{{4x + 11}}{{{x^2} + 5x + 6}} = \frac{{4x + 11}}{{(x + 2)(x + 3)}} = \frac{A}{{x + 2}} + \frac{B}{{x + 3}} = \frac{{A\left( {x + 3} \right) + B\left( {x + 2} \right)}}{{(x + 2)(x + 3)}}$
Thay x=-2 vào hai tử số : 3=A và thay x=-3 vào hai tử số : -1= -B suy ra B=1
Do đó : f(x)= $\frac{3}{{x + 2}} + \frac{1}{{x + 3}}$
Vậy : $\int\limits_0^1 {\frac{{4x + 11}}{{{x^2} + 5x + 6}}dx}  = \int\limits_0^1 {\left( {\frac{3}{{x + 2}} + \frac{1}{{x + 3}}} \right)dx}  = \left( {3\ln \left| {x + 2} \right| + \ln \left| {x + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = 2\ln 3 - \ln 2} \right.$
Cách 2: ( Hạ bậc)
Ta có : f(x)=$\frac{{2\left( {2x + 5} \right) + 1}}{{{x^2} + 5x + 6}} = 2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} = 2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{x + 2}} - \frac{1}{{x + 3}}$
Do đó :
I=$\int\limits_0^1 {f(x)dx}  = \int\limits_0^1 {\left( {2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{x + 2}} - \frac{1}{{x + 3}}} \right)dx} $
$ = \left( {2\ln \left| {{x^2} + 5x + 6} \right| + \ln \left| {\frac{{x + 2}}{{x + 3}}} \right|} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = 2\ln 3 - \ln 2} \right.$

2. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ có hai nghiệm kép
Công thức cần chú ý : $\int\limits_\alpha ^\beta  {\frac{{u'(x)dx}}{{u(x)}} = \ln \left( {u(x)} \right)\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.} $
Thông thừơng ta đặt (x+b/2a)=t .

Ví dụ 4 :
Tính tích phân sau : I= $\int\limits_0^3 {\frac{{{x^3}}}{{{x^2} + 2x + 1}}dx} $
Giải
Ta có : $\int\limits_0^3 {\frac{{{x^3}}}{{{x^2} + 2x + 1}}dx}  = \int\limits_0^3 {\frac{{{x^3}}}{{{{\left( {x + 1} \right)}^2}}}dx} $
Đặt : t=x+1 suy ra : dx=dt ; x=t-1 và : khi x=0 thì t=1 ; khi x=3 thì t=4 .
Do đó :  $\int\limits_0^3 {\frac{{{x^3}}}{{{{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_1^4 {\frac{{{{\left( {t - 1} \right)}^3}}}{{{t^2}}}dt}  = \int\limits_1^4 {\left( {t - 3 + \frac{3}{t} - \frac{1}{{{t^2}}}} \right)dt}  = \left( {\frac{1}{2}{t^2} - 3t + \ln \left| t \right| + \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  1
\end{array} = } \right.2\ln 2 - \frac{3}{2}$

Ví dụ 5:
Tính tích phân sau : I= $\int\limits_0^1 {\frac{{4x}}{{4{x^2} - 4x + 1}}dx} $
Giải
Ta có :  $\frac{{4x}}{{4{x^2} - 4x + 1}} = \frac{{4x}}{{{{\left( {2x - 1} \right)}^2}}}$
Đặt : t= 2x-1 suy ra : $dt = 2dx \to dx = \frac{1}{2}dt;\left\{ \begin{array}
  x = 0 \leftrightarrow t =  - 1  \\
  x = 1 \leftrightarrow t = 1  \\
\end{array}  \right.$
Do đó : $\int\limits_0^1 {\frac{{4x}}{{4{x^2} - 4x + 1}}dx}  = \int\limits_0^1 {\frac{{4x}}{{{{\left( {2x - 1} \right)}^2}}}dx}  = \int\limits_{ - 1}^1 {\frac{{4.\frac{1}{2}\left( {t + 1} \right)}}{{{t^2}}}\frac{1}{2}dt}  = \int\limits_{ - 1}^1 {\left( {\frac{1}{t} + \frac{1}{{{t^2}}}} \right)dt}  = \left( {\ln \left| t \right| - \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  { - 1}
\end{array} =  - 2} \right.$

3. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ vô nghiệm:
Ta viết : f(x)= $\frac{{P(x)}}{{a\left[ {{{\left( {x + \frac{b}{{2a}}} \right)}^2} + {{\left( {\frac{{\sqrt { - \Delta } }}{{2a}}} \right)}^2}} \right]}} = \frac{{P(x)}}{{a\left( {{u^2} + {k^2}} \right)}};\left\{ \begin{array}
  u = x + \frac{b}{{2a}}  \\
  k = \frac{{\sqrt { - \Delta } }}{{2a}}  \\
\end{array}  \right.$
Khi đó : Đặt u= ktant

Ví dụ 6:
Tính tích phân : I= $\int\limits_0^2 {\frac{x}{{{x^2} + 4x + 5}}dx} $
Giải
Ta có : $\int\limits_0^2 {\frac{x}{{{x^2} + 4x + 5}}dx}  = \int\limits_0^2 {\frac{x}{{{{\left( {x + 2} \right)}^2} + 1}}dx} $
Đặt : x+2=tant , suy ra : dx=$\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt;\; \Rightarrow \left\{ \begin{array}
  x = 0 \leftrightarrow \tan t = 2  \\
  x = 2 \leftrightarrow \tan t = 4  \\
\end{array}  \right.$
Do đó : $\int\limits_0^2 {\frac{x}{{{{\left( {x + 2} \right)}^2} + 1}}dx}  = \int\limits_{{t_1}}^{{t_2}} {\frac{{\tan t - 2}}{{1 + {{\tan }^2}t}}\frac{{dt}}{{c{\text{o}}{{\text{s}}^2}t}}}  = \int\limits_{{t_1}}^{{t_2}} {\left( {\frac{{\sin t}}{{c{\text{ost}}}} - 2} \right)dt}  = \left( { - \ln \left| {c{\text{ost}}} \right| - 2t} \right)\left| {\begin{array}{*{20}{c}}
  {{t_2}} \\
  {{t_1}}
\end{array}} \right.\left( 1 \right)$
Từ : $\left[ \begin{array}
  \tan t = 2 \leftrightarrow 1 + {\tan ^2}t = 5 \leftrightarrow c{\text{o}}{{\text{s}}^2}t = \frac{1}{5} \to c{\text{os}}{{\text{t}}_{\text{1}}} = \frac{1}{{\sqrt 5 }}  \\
  \tan t = 4 \leftrightarrow 1 + {\tan ^2}t = 17 \leftrightarrow c{\text{o}}{{\text{s}}^2}t = \frac{1}{{17}} \to c{\text{os}}{{\text{t}}_{\text{2}}} = \frac{1}{{\sqrt {17} }}  \\
\end{array}  \right.$
Vậy : $\left( { - \ln \left| {c{\text{ost}}} \right| - 2t} \right)\left| {\begin{array}{*{20}{c}}
  {{t_2}} \\
  {{t_1}}
\end{array}} \right. =  - \left[ {\left( {\ln \left| {c{\text{os}}{{\text{t}}_{\text{2}}}} \right| - 2{t_2}} \right) - \left( {\ln \left| {\cos {t_1}} \right| - 2{t_1}} \right)} \right] =  - \ln \left| {\frac{{c{\text{os}}{{\text{t}}_{\text{2}}}}}{{{\text{cos}}{{\text{t}}_{\text{1}}}}}} \right| + 2\left( {{t_2} - {t_1}} \right)$
$ \Leftrightarrow  - \ln \left| {\frac{{c{\text{os}}{{\text{t}}_{\text{2}}}}}{{{\text{cos}}{{\text{t}}_{\text{1}}}}}} \right| + 2\left( {{t_2} - {t_1}} \right) = 2\left( {{\text{arctan4 - arctan2}}} \right) - \ln \left| {\frac{1}{{\sqrt {17} }}.\sqrt 5 } \right| = 2\left( {{\text{arctan4 - arctan2}}} \right) - \frac{1}{2}\ln \frac{5}{{17}}$
Ví dụ 7:
Tính tích phân sau : I= $\int\limits_0^2 {\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}}dx} $
Giải
Ta có : $\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}} = x + 2 + \frac{1}{{{x^2} + 4}}$
Do đó : $\int\limits_0^2 {\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}}dx}  = \int\limits_0^2 {\left( {x + 2 + \frac{1}{{{x^2} + 4}}} \right)dx}  = \left( {\frac{1}{2}{x^2} + 2x} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  0
\end{array} + \int\limits_0^2 {\frac{{dx}}{{{x^2} + 4}}} } \right. = 6 + J$(1)
Tính tích phân J= $\int\limits_0^2 {\frac{1}{{{x^2} + 4}}dx} $
Đặt : x=2tant suy ra : dx =$\frac{2}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt;\left\{ \begin{array}
  x = 0 \to t = 0  \\
  x = 2 \to t = \frac{\pi }{4}  \\
\end{array}  \right. \leftrightarrow t \in \left[ {0;\frac{\pi }{4}} \right] \to c{\text{ost > 0}}$
Khi đó : $\int\limits_0^2 {\frac{1}{{{x^2} + 4}}dx}  = \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{1 + {{\tan }^2}t}}\frac{2}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {dt}  = \frac{1}{2}t\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{\pi }{8}} \right.$
Thay vào (1) : $I = 6 + \frac{\pi }{8}$

C. DẠNG : $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d}}dx} $
1. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có một nghiệm bội ba
Công thức cần chú ý : $\int\limits_\alpha ^\beta  {\frac{1}{{{x^m}}}dx}  = \frac{1}{{1 - m}}.\frac{1}{{{x^{m - 1}}}}\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$

Ví dụ 8:
Tính tích phân : I= $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx} $
Giải
Cách 1:
Đặt : x+1=t , suy ra x=t-1 và : khi x=0 thì t=1 ; khi x=1 thì t=2
Do đó : $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx}  = \int\limits_1^2 {\frac{{t - 1}}{{{t^3}}}dt}  = \int\limits_1^2 {\left( {\frac{1}{{{t^2}}} - \frac{1}{{{t^3}}}} \right)dt}  = \left( { - \frac{1}{t} + \frac{1}{2}\frac{1}{{{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{8}} \right.$
Cách 2:
Ta có : $\frac{x}{{{{\left( {x + 1} \right)}^3}}} = \frac{{\left( {x + 1} \right) - 1}}{{{{\left( {x + 1} \right)}^3}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^3}}}$
Do đó : $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx}  = \int\limits_0^1 {\left[ {\frac{1}{{{{\left( {x + 1} \right)}^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^3}}}} \right]} dx = \left[ { - \frac{1}{{x + 1}} + \frac{1}{2}\frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right]\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{1}{8}} \right.$

Ví dụ 9 :
Tính tích phân : I=$\int\limits_{ - 1}^0 {\frac{{{x^4}}}{{{{\left( {x - 1} \right)}^3}}}dx} $.
Giải
Đặt : x-1=t , suy ra : x=t+1 và : khi x=-1 thì t=-2 và khi x=0 thì t=-1 .
Do đó : $\int\limits_{ - 1}^0 {\frac{{{x^4}}}{{{{\left( {x - 1} \right)}^3}}}dx}  = \int\limits_{ - 2}^{ - 1} {\frac{{{{\left( {t + 1} \right)}^4}}}{{{t^3}}}dt}  = \int\limits_{ - 2}^{ - 1} {\frac{{{t^4} + 4{t^3} + 6{t^2} + 4t + 1}}{{{t^3}}}dt}  = \int\limits_{ - 2}^{ - 1} {\left( {t + 4 + \frac{6}{t} + \frac{4}{{{t^2}}} + \frac{1}{{{t^3}}}} \right)dt} $
$ \Leftrightarrow \int\limits_{ - 2}^{ - 1} {\left( {t + 4 + \frac{6}{t} + \frac{4}{{{t^2}}} + \frac{1}{{{t^3}}}} \right)dt}  = \left( {\frac{1}{2}{t^2} + 4t + 6\ln \left| t \right| - \frac{4}{t} - \frac{1}{2}\frac{1}{{{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  { - 1} \\
  { - 2}
\end{array} = \frac{{33}}{8} - 6\ln 2} \right.$

2. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có hai nghiệm:
Có hai cách giải : Hệ số bất định và phương pháp hạ bậc

Ví dụ 10 :
Tính tích phân sau : I= $\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^3}}}dx} $
Giải
Cách 1. ( Phương pháp hệ số bất định )
Ta có :
$\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} = \frac{A}{{x - 1}} + \frac{B}{{\left( {x + 1} \right)}} + \frac{C}{{{{\left( {x + 1} \right)}^2}}} = \frac{{A{{\left( {x + 1} \right)}^2} + B\left( {x - 1} \right)\left( {x + 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Thay hai nghiệm mẫu số vào hai tử số : $\left\{ \begin{array}
  1 = 4A  \\
  1 =  - 2C  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = \frac{1}{4}  \\
  C =  - \frac{1}{2}  \\
\end{array}  \right.$.   Khi đó (1)
$ \Leftrightarrow \frac{{\left( {A + B} \right){x^2} + \left( {2A + C} \right)x + A - B - C}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} \Rightarrow A - B - C = 1 \Leftrightarrow B = A - C - 1 = \frac{1}{4} + \frac{1}{2} - 1 =  - \frac{1}{4}$
Do đó : $\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_2^3 {\left( {\frac{1}{4}.\frac{1}{{x - 1}} + \frac{1}{4}.\frac{1}{{\left( {x + 1} \right)}} - \frac{1}{2}\frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right)dx} $
$ \Leftrightarrow I = \left[ {\frac{1}{4}\ln \left( {x - 1} \right)\left( {x + 1} \right) + \frac{1}{2}.\frac{1}{{\left( {x + 1} \right)}}} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = \frac{1}{4}\ln 8 = \frac{3}{4}\ln 2} \right.$
Cách 2:
Đặt : t=x+1, suy ra : x=t-1 và khi x=2 thì t=3 ; khi x=3 thì t=4 .
Khi đó :
 I=$\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_3^4 {\frac{{dt}}{{{t^2}\left( {t - 2} \right)}} = \frac{1}{2}\int\limits_3^4 {\frac{{t - \left( {t - 2} \right)}}{{{t^2}\left( {t - 2} \right)}}dt}  = \frac{1}{2}\left( {\int\limits_2^4 {\frac{1}{{t\left( {t - 2} \right)}}dt - \int\limits_3^4 {\frac{1}{t}dt} } } \right)} $
$ \Leftrightarrow I = \frac{1}{2}\left( {\frac{1}{2}\int\limits_2^4 {\left( {\frac{1}{{t - 2}} - \frac{1}{t}} \right)dt - \int\limits_3^4 {\frac{1}{t}dt} } } \right) = \left( {\frac{1}{4}\ln \left| {\frac{{t - 2}}{t}} \right| - \frac{1}{2}\ln \left| t \right|} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array} = } \right.\frac{3}{4}\ln 2$
Hoặc:
$\frac{1}{{{t^3} - 2{t^2}}} = \frac{{\left( {3{t^2} - 4t} \right)}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{{3{t^2} - 4t - 4}}{{{t^3} - 2{t^2}}}} \right) = \left[ {\frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\frac{{\left( {3t + 2} \right)}}{{{t^2}}}} \right] = \frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{3}{t} + \frac{2}{{{t^2}}}} \right)$
Do đó : I=$\int\limits_3^4 {\left( {\frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{3}{t} + \frac{2}{{{t^2}}}} \right)} \right)dt = \left( {\ln \left| {{t^3} - 2{t^2}} \right| - \frac{1}{4}\left( {3\ln \left| t \right| - \frac{2}{t}} \right)} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array} = } \right.} \frac{3}{4}\ln 2$
Hoặc : $\frac{1}{{{t^2}\left( {t - 2} \right)}} = \frac{1}{4}\left( {\frac{{{t^2} - \left( {{t^2} - 4} \right)}}{{{t^2}\left( {t - 2} \right)}}} \right) = \frac{1}{4}\left( {\frac{1}{{t - 2}} - \frac{{t + 2}}{{{t^2}}}} \right) = \frac{1}{4}\left( {\frac{1}{{t - 2}} - \frac{1}{t} - \frac{2}{{{t^2}}}} \right)$
Do đó :
I=$\frac{1}{4}\int\limits_3^4 {\left( {\frac{1}{{t - 2}} - \frac{1}{t} - \frac{2}{{{t^2}}}} \right)dt = \frac{1}{4}\left( {\ln \left| {\frac{{t - 2}}{t}} \right| + \frac{2}{t}} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array}} \right.}  = \frac{1}{4}\left( {\ln \frac{1}{2} + \frac{1}{2} - \ln \frac{1}{3} - \frac{2}{3}} \right) = \frac{1}{4}\left( {\ln 3 - \ln 2 - \frac{1}{6}} \right)$

Ví dụ 11:
Tính tích phân sau : I= $\int\limits_2^3 {\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 2} \right)}}dx} $
Giải
Đặt : x-1=t , suy ra : x=t+1 , dx=dt và : khi x=2 thì t=1 ; x=3 thì t=2 .
Do đó : $\int\limits_2^3 {\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 2} \right)}}dx}  = \int\limits_1^2 {\frac{{{{\left( {t + 1} \right)}^2}}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt} $
Cách 1: ( Hệ số bất định )
Ta có :$\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{{At + B}}{{{t^2}}} + \frac{C}{{t + 3}} = \frac{{\left( {At + B} \right)\left( {t + 3} \right) + C{t^2}}}{{{t^2}\left( {t + 3} \right)}} = \frac{{\left( {A + C} \right){t^2} + \left( {3A + B} \right)t + 3B}}{{{t^2}\left( {t + 3} \right)}}$
Đồng nhất hệ số hai tử số : $\left\{ \begin{array}
  A + C = 1  \\
  3A + B = 2  \\
  3B = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  B = \frac{1}{3}  \\
  A = \frac{5}{9}  \\
  C = \frac{4}{9}  \\
\end{array}  \right. \Rightarrow \frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{1}{9}\frac{{t + 3}}{{{t^2}}} + \frac{4}{9}\frac{1}{{t + 3}}$
Do đó : $\int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\left( {\frac{1}{9}\left( {\frac{1}{t} + \frac{3}{{{t^2}}}} \right) + \frac{4}{9}\left( {\frac{1}{{t + 3}}} \right)} \right)dt}  = \left( {\frac{1}{9}\left( {\ln \left| t \right| - \frac{3}{t}} \right) + \frac{4}{9}\ln \left| {t + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{17}}{6} + \frac{4}{9}\ln 5 - \frac{7}{9}\ln 2$
Cách 2:
Ta có : $\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{1}{3}\left( {\frac{{3{t^2} + 6t + 3}}{{{t^3} + 3{t^2}}}} \right) = \frac{1}{3}\left[ {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}} + \frac{3}{{{t^2}\left( {t + 3} \right)}}} \right] = \frac{1}{3}\left[ {\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\left( {\frac{{{t^2} - \left( {{t^2} - 9} \right)}}{{{t^2}\left( {t + 3} \right)}}} \right)} \right]$ $ = \frac{1}{3}\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\frac{1}{{t + 3}} - \frac{1}{9}\frac{{t - 3}}{{{t^2}}} = \frac{1}{3}\left[ {\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\frac{1}{{t + 3}} - \frac{1}{9}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)} \right]$
Vậy : $\int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\left( {\frac{1}{3}\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\left( {\frac{1}{{t + 3}} - \frac{1}{t} + \frac{3}{{{t^2}}}} \right)} \right)dt}  = \left[ {\frac{1}{3}\ln \left| {{t^3} + 3{t^2}} \right| + \frac{1}{{27}}\left( {\ln \left| {\frac{{t + 3}}{t}} \right| - \frac{3}{t}} \right)} \right]\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array}} \right.$
Do đó I= $\frac{{17}}{6} + \frac{4}{9}\ln 5 - \frac{7}{9}\ln 2$

3. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có ba nghiệm:
Ví dụ 12:

Tính tích phân sau : I= $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx} $
Giải
Cách 1: ( Hệ số bất định )
Ta có : f(x)=$\frac{1}{{x\left( {{x^2} - 1} \right)}} = \frac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{A}{x} + \frac{B}{{x - 1}} + \frac{C}{{x + 1}} = \frac{{A\left( {{x^2} - 1} \right) + Bx\left( {x + 1} \right) + Cx\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$
Đồng nhất hệ số hai tử số bằng cách thay các nghiệm : x=0;x=1 và x=-1 vào hai tử ta có: $\left\{ \begin{array}
  x = 0 \to 1 =  - A  \\
  x =  - 1 \to 1 = 2C  \\
  x = 1 \to 1 = 2B  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - 1  \\
  B = \frac{1}{2}  \\
  C = \frac{1}{2}  \\
\end{array}  \right.\\ \Rightarrow f(x) =  - \frac{1}{x} + \frac{1}{2}\left( {\frac{1}{{x - 1}}} \right) + \frac{1}{2}\left( {\frac{1}{{x + 1}}} \right)$
Vậy : $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx}  = \int\limits_2^3 {\left( {\frac{1}{2}\left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right) - \frac{1}{x}} \right)dx}  = \left[ {\frac{1}{2}\left( {\ln \left( {x - 1} \right)\left( {x + 1} \right)} \right) - \ln \left| x \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = \frac{5}{2}\ln 2 - \frac{3}{2}\ln 3} \right.$
Cách 2: ( Phương pháp nhẩy lầu )
Ta có : $\frac{1}{{x\left( {{x^2} - 1} \right)}} = \frac{{{x^2} - \left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = \frac{x}{{{x^2} - 1}} - \frac{1}{x} = \frac{1}{2}\frac{{2x}}{{{x^2} - 1}} - \frac{1}{x}$
Do đó : $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx}  = \frac{1}{2}\int\limits_2^3 {\frac{{2xdx}}{{{x^2} - 1}} - \int\limits_2^3 {\frac{1}{x}dx}  = \left( {\frac{1}{2}\ln \left( {{x^2} - 1} \right) - \ln x} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = } \right.} \frac{5}{2}\ln 2 - \frac{3}{2}\ln 3$

Ví dụ 13:
Tính tích phân sau : I=$\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx} $
Giải
Cách 1:
Ta có : $\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}} = \frac{{x + 1}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{A}{x} + \frac{B}{{x - 2}} + \frac{C}{{x + 2}} = \frac{{A\left( {{x^2} - 4} \right) + Bx\left( {x + 2} \right) + Cx\left( {x - 2} \right)}}{{x\left( {{x^2} - 4} \right)}}$
Thay các nghiệm của mẫu số vào hai tử số :
Khi x=0 : 1= -4A suy ra : A=-1/4
Khi x=-2 : -1= 8C suy ra C=-1/8
Khi x=2 : 3= 8B suy ra : B=3/8 .
Do đó : f(x) = $ - \frac{1}{4}\left( {\frac{1}{x}} \right) - \frac{1}{8}\left( {\frac{1}{{x - 2}}} \right) + \frac{3}{8}\left( {\frac{1}{{x + 2}}} \right)$
Vậy : $\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx}  =  - \frac{1}{4}\int\limits_2^3 {\frac{1}{x}dx - \frac{1}{8}\int\limits_2^3 {\frac{1}{{x - 2}}dx}  + \frac{3}{8}\int\limits_2^3 {\frac{1}{{x + 2}}} dx = \left( { - \frac{1}{4}\ln \left| x \right| - \frac{1}{8}\ln \left| {x - 2} \right| + \frac{3}{8}\ln \left| {x + 2} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = } \right.} $
    $ = \frac{5}{8}\ln 3 - \frac{3}{8}\ln 5 - \frac{1}{4}\ln 2$
Cách 2:
Ta có : $\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}} = \frac{1}{{\left( {{x^2} - 4} \right)}} + \frac{1}{{x\left( {{x^2} - 4} \right)}} = \frac{1}{4}\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right) + \frac{1}{4}\left( {\frac{{{x^2} - \left( {{x^2} - 4} \right)}}{{x\left( {{x^2} - 4} \right)}}} \right) = \frac{1}{4}\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}} + \frac{1}{2}\frac{{2x}}{{{x^2} - 4}} - \frac{1}{x}} \right)$
Do đó : $\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx}  = \frac{1}{4}\int\limits_3^4 {\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}} + \frac{1}{2}\frac{{2x}}{{{x^2} - 4}} - \frac{1}{x}} \right)dx = } \left[ {\frac{1}{4}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right| + \frac{1}{2}\ln \left( {{x^2} - 4} \right) - \ln \left| x \right|} \right]\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array}} \right.$

Ví dụ 14:
Tính tích phân sau : $\int\limits_2^3 {\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}dx} $
Giải
Cách 1: ( Hệ số bất định )
$\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{x + 1}} + \frac{C}{{x + 2}} = \frac{{A\left( {x + 1} \right)\left( {x + 2} \right) + B\left( {x - 1} \right)\left( {x + 2} \right) + C\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}$
Thay lần lượt các nghiệm mẫu số vào hai tử số :
Thay : x=1  Ta cớ : 1=2A , suy ra : A=1/2
Thay : x=-1 ,Ta có :1=-2B, suy ra : B=-1/2
Thay x=-2 ,Ta có : 4= -5C, suy ra : C=-5/4
Do đó :
I=$\int\limits_2^3 {\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}dx}  = \int\limits_2^3 {\left( {\frac{1}{2}\frac{1}{{x - 1}} - \frac{1}{2}\frac{1}{{x + 1}} - \frac{5}{4}\frac{1}{{x + 2}}} \right)} dx = \left[ {\frac{1}{2}\ln \left| {\frac{{x - 1}}{{x + 1}}} \right| - \frac{5}{4}\ln \left| {x + 2} \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right. = \frac{1}{2}\ln \frac{3}{2}$
Cách 2. (Hạ bậc)
Ta có :
$\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{{{x^2} - 1 + 1}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{1}{{x + 2}} + \frac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}}\\
 = \frac{1}{{x + 2}} + \frac{1}{2}\frac{{x\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{1}{{x + 2}} + \frac{1}{2}\left[ {\frac{x}{{\left( {x - 1} \right)\left( {x + 2} \right)}} - \frac{1}{{x + 1}}} \right] \\
= \frac{1}{{x + 2}} + \frac{1}{2}\left[ {1 + \frac{1}{3}\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 2}}} \right) - \frac{1}{{x + 1}}} \right]$
Từ đó suy ra kết quả .

Thẻ

Lượt xem

48712
Chat chit và chém gió
  • ๖ۣۜTQT☾♋☽: c có gặp ai htn ngoài đấy k? 11/29/2018 8:32:21 PM
  • @_@ *Mèo9119* @_@: rút kinh nghiệm năm nay ở lại ôn 11/29/2018 8:32:26 PM
  • @_@ *Mèo9119* @_@: có em 11/29/2018 8:32:32 PM
  • ๖ۣۜTQT☾♋☽: ai v c? 11/29/2018 8:32:48 PM
  • @_@ *Mèo9119* @_@: em biết anh việt chứ 11/29/2018 8:32:50 PM
  • ๖ۣۜTQT☾♋☽: còn ai khác k,e k nhớ a ý 11/29/2018 8:33:18 PM
  • @_@ *Mèo9119* @_@: biết thảo linh ko? 11/29/2018 8:33:26 PM
  • ๖ۣۜTQT☾♋☽: k 11/29/2018 8:33:38 PM
  • @_@ *Mèo9119* @_@: ẹc ẹc 11/29/2018 8:33:44 PM
  • ๖ۣۜTQT☾♋☽: có gặp ai khóa 2k vừa k? 11/29/2018 8:34:12 PM
  • @_@ *Mèo9119* @_@: thảo linh đó 11/29/2018 8:34:22 PM
  • @_@ *Mèo9119* @_@: có con bé nhung, học gần chỗ chị àm chị cũng chưa gặp hầy 11/29/2018 8:34:35 PM
  • @_@ *Mèo9119* @_@: thằng hoàng 2k học cùng trường vs chị nữa 11/29/2018 8:34:52 PM
  • ๖ۣۜTQT☾♋☽: big_grin 11/29/2018 8:35:09 PM
  • @_@ *Mèo9119* @_@: https://www.facebook.com/profile.php?id=100014388106612 11/29/2018 8:35:17 PM
  • ๖ۣۜTQT☾♋☽: e phải tận 2 năm nữa 11/29/2018 8:35:48 PM
  • ๖ۣۜTQT☾♋☽: hơi lâu 11/29/2018 8:35:56 PM
  • @_@ *Mèo9119* @_@: ksao 11/29/2018 8:36:43 PM
  • @_@ *Mèo9119* @_@: cố lên 11/29/2018 8:36:46 PM
  • @_@ *Mèo9119* @_@: ^^ 11/29/2018 8:36:48 PM
  • ๖ۣۜTQT☾♋☽: big_grintha hồ ngắm gái,yêu đương,bố mẹ k bt jlaughing 11/29/2018 8:37:15 PM
  • ๖ۣۜTQT☾♋☽: đập đá,hút ke,zẩy đầm 11/29/2018 8:37:44 PM
  • @_@ *Mèo9119* @_@: mà lo nhiều thứ happy 11/29/2018 8:37:49 PM
  • @_@ *Mèo9119* @_@: ko cẩn thận tạch như chơi :3 11/29/2018 8:37:58 PM
  • ๖ۣۜTQT☾♋☽:11/29/2018 8:38:44 PM
  • @_@ *Mèo9119* @_@: buồn thật, htn giờ vắng quá 11/29/2018 8:40:05 PM
  • ๖ۣۜTQT☾♋☽: như trang hoang 11/29/2018 8:43:15 PM
  • @_@ *Mèo9119* @_@: ừa 11/29/2018 8:44:56 PM
  • @_@ *Mèo9119* @_@: chả cò ai hoạt động nữa 11/29/2018 8:45:12 PM
  • Kiệt2003: Hi 11/29/2018 9:45:27 PM
  • laitridung2004:11/30/2018 12:49:57 PM
  • ๖ۣۜBossღ: broken_heart 11/30/2018 9:24:36 PM
  • ๖ۣۜBossღ: broken_heart 11/30/2018 9:26:59 PM
  • lytran1611: ... 11/30/2018 9:30:28 PM
  • ๖ۣۜBossღ: broken_heart 11/30/2018 9:32:30 PM
  • lytran1611: chắc giờ này ai cũng ngủ rồi 11/30/2018 9:33:37 PM
  • lytran1611: >< 11/30/2018 9:33:38 PM
  • ๖ۣۜBossღ: broken_heart 11/30/2018 9:34:40 PM
  • ngunhubo: laughing 11/30/2018 9:36:46 PM
  • laitridung2004: hú? 11/30/2018 9:39:48 PM
  • ๖ۣۜBossღ: broken_heart 11/30/2018 9:44:52 PM
  • @_@ *Mèo9119* @_@: ? 11/30/2018 10:17:32 PM
  • trinhthithuuyen2342001: hi 12/1/2018 12:39:09 PM
  • vat2049: có 32 cuốn sách, trong đó có 17 cuốn bìa đỏ. Xếp ngẫu nhiên thành 1 giá ngang trên giá sách. chứng minh rằng luôn tìm được ít nhất 2 cuốn sách bìa đỏ mà giữa chúng có 7 cuốn sách khác xen kẽ nhau 12/1/2018 3:39:55 PM
  • vat2049: có ai on cho em hỏi bài trên giải thế nào với ạ? 12/1/2018 3:40:26 PM
  • laitridung2004:12/1/2018 4:50:01 PM
  • laitridung2004: hú? 12/2/2018 6:24:02 AM
  • laitridung2004:12/2/2018 2:08:22 PM
  • laitridung2004: hú? 12/2/2018 7:29:51 PM
  • laitridung2004: Việt Nam thắng rồi hú hú 12/2/2018 8:22:21 PM
  • ๖ۣۜBossღ: broken_heart 12/2/2018 9:26:57 PM
  • thaknh: huhuhuhhuhu 12/3/2018 9:18:59 PM
  • thaknh: vn thắng lâu cmm 12/3/2018 9:19:08 PM
  • thaknh: cmnr 12/3/2018 9:19:11 PM
  • thaknh: ai cm đc định lý fecma nhỏ ko 12/3/2018 9:19:24 PM
  • laitridung2004:12/4/2018 12:03:07 PM
  • camtu: hi 12/4/2018 9:12:05 PM
  • camtu: hi 12/4/2018 9:12:12 PM
  • laitridung2004: hú? 12/4/2018 9:18:29 PM
  • camtu: big_grin 12/4/2018 9:19:18 PM
  • camtu: im quá đi 12/4/2018 9:20:26 PM
  • hoangmymn149: . 12/5/2018 6:58:01 PM
  • hoangmymn149: whew 12/5/2018 7:53:18 PM
  • Rushia: big_grin 12/5/2018 11:05:50 PM
  • Rushia: Còn ai k happy 12/5/2018 11:06:21 PM
  • laitridung2004:12/6/2018 7:20:12 PM
  • laitridung2004: hú? 12/7/2018 2:57:00 PM
  • lethithanhhoa79: Hello 12/7/2018 8:12:37 PM
  • lethithanhhoa79: Kp đi 12/7/2018 8:12:46 PM
  • lethithanhhoa79: 😂😂😂😂😂 12/7/2018 8:12:54 PM
  • người ẩn danh!: straight_face 12/7/2018 9:12:44 PM
  • laitridung2004:12/7/2018 9:43:25 PM
  • laitridung2004: hú? 12/8/2018 9:12:00 PM
  • doquankaka01: hello 12/9/2018 9:51:40 AM
  • Thanh Nga: . 12/9/2018 2:14:04 PM
  • Thanh Nga: . 12/9/2018 2:14:05 PM
  • Thanh Nga: . 12/9/2018 2:14:05 PM
  • Thanh Nga: . 12/9/2018 2:14:05 PM
  • Thanh Nga: . 12/9/2018 2:14:05 PM
  • Thanh Nga: . 12/9/2018 2:14:06 PM
  • Thanh Nga: . 12/9/2018 2:14:06 PM
  • Thanh Nga: . 12/9/2018 2:14:06 PM
  • Thanh Nga: . 12/9/2018 2:14:07 PM
  • Thanh Nga: . 12/9/2018 2:14:08 PM
  • Thanh Nga: có ai k 12/9/2018 2:14:13 PM
  • linh nhi: xin chào 12/9/2018 9:14:17 PM
  • caovietnga123456: hello 12/9/2018 9:20:52 PM
  • caovietnga123456: thanh nga 12/9/2018 9:21:01 PM
  • caovietnga123456: giống tên mình và mẹ mình + lại quá 12/9/2018 9:21:35 PM
  • caovietnga123456: .. 12/9/2018 9:22:32 PM
  • người ẩn danh!: straight_face 12/9/2018 10:36:27 PM
  • laitridung2004: hú? 12/10/2018 12:56:45 PM
  • laitridung2004:12/10/2018 9:51:26 PM
  • laitridung2004: hú? 12/11/2018 4:37:46 PM
  • Hongteam2345 :12/11/2018 10:01:12 PM
  • Hongteam2345 : Có ai k 12/11/2018 10:01:39 PM
  • Hongteam2345 : Aloooo 12/11/2018 10:01:44 PM
  • Ngọc 2k4 : Meoo 12/11/2018 10:04:26 PM
  • Ngọc 2k4 : Có ma nào k 12/11/2018 10:04:40 PM
  • laitridung2004:12/12/2018 12:29:32 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • ahihi
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo9119* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minh
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • tranhai98
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trang
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • ☼SunShine❤️
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜBossღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Hạ Vân
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • Rushia
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜ➻❥Pu
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • ๖ۣۜNatsu
  • Băng
  • ๖ۣۜCold
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyendang241001
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Vũ Như Quỳnh
  • benganxd2509
  • pnt2912003
  • nhathan61
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Linh Linh miu
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • fbt1800555581
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • ๖ۣۜLãnh♌Băng ( ML)
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • Nguyen Le Na
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • Tuyết Nhi
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phúc Huy
  • Phùng THị Thu Hà
  • ๖ۣۜLãnh♌Huyết
  • ๖ۣۜNgược dòng thời gian
  • lehongminh22072001
  • Nguyễn Hồng Ngọc
  • ♓幸せ ♥╭╮♥ha ≧✯◡✯≦✌
  • admin
  • skud2003
  • Zidane
  • Cao Linh
  • Hạ Nhi
  • Kiệt2003
  • cuong3888684
  • Mây của trời cứ để gió cuốn đi
  • caodsao
  • le.tg.310314
  • hoa.khanh.lhyan2707
  • tuthaiduong012
  • aidhakfcgano1
  • hisname004
  • honhutlinh
  • let02hb
  • vohieutrung99