PHƯƠNG PHÁP CHUYỂN PHƯƠNG TRÌNH VÔ TỈ VỀ HỆ PHƯƠNG TRÌNH


Trong chuyên đề này, ta sẽ tìm hiểu về các phương pháp giải phương trình vô tỉ bằng cách chuyển về hệ phương trình và giải quyết bài toán trên các hệ phương trình này. Các phương pháp bao gồm:
1. Đặt ẩn phụ đưa về hệ thông thường
2.  Xây dựng phương trình vô tỉ từ hệ đối xứng loại II
3. Dạng hệ gần đối xứng

1. Đặt ẩn phụ đưa về hệ thông thường
Phương pháp:

Đặt $u = \alpha \left( x \right),v = \beta \left( x \right)$  và tìm mối quan hệ giữa $\alpha \left( x \right)$ và $\beta \left( x \right)$ từ đó tìm được hệ theo u,v

Bài 1:
Giải phương trình: $x\sqrt[3]{{35 - {x^3}}}\left( {x + \sqrt[3]{{35 - {x^3}}}} \right) = 30$
Giải:
Đặt $y = \sqrt[3]{{35 - {x^3}}} \Rightarrow {x^3} + {y^3} = 35$
Khi đó phương trình chuyển về hệ phương trình sau: $\left\{ \begin{array}
  xy(x + y) = 30  \\
  {x^3} + {y^3} = 35  \\
\end{array}  \right.$, giải hệ này ta tìm được $(x;y) = (2;3) \vee (x;y) = (3;2)$.
Tức là nghiệm của phương trình là $x \in \{ 2;3\} $

Bài 2:
Giải phương trình: $\sqrt {\sqrt 2  - 1 - x}  + \sqrt[4]{x} = \frac{1}{{\sqrt[4]{2}}}$
Giải:
Điều kiện: $0 \leqslant x \leqslant \sqrt 2  - 1$
Đặt  $\left\{ \begin{array}
  \sqrt {\sqrt 2  - 1 - x}  = u  \\
  \sqrt[4]{x} = v  \\
\end{array}  \right. \Rightarrow 0 \leqslant u \leqslant \sqrt {\sqrt 2  - 1} ,0 \leqslant v \leqslant \sqrt[4]{{\sqrt 2  - 1}}$
Ta đưa về hệ phương trình sau:
$\left\{ \begin{array}
  u + v = \frac{1}{{\sqrt[4]{2}}}  \\
  {u^2} + {v^4} = \sqrt 2  - 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  u = \frac{1}{{\sqrt[4]{2}}} - v  \\
  {\left( {\frac{1}{{\sqrt[4]{2}}} - v} \right)^2} + {v^4} = \sqrt 2  - 1  \\
\end{array}  \right.$
Giải phương trình thứ  2: ${({v^2} + 1)^2} - {\left( {v + \frac{1}{{\sqrt[4]{2}}}} \right)^2} = 0$, từ đó tìm ra $v$ rồi thay vào tìm nghiệm của phương trình.

Bài 3:
Giải phương trình sau: $x + \sqrt {5 + \sqrt {x - 1} }  = 6$
Giải:
Điều kiện: $x \geqslant 1$
Đặt $a = \sqrt {x - 1} ,\,\,b = \sqrt {5 + \sqrt {x - 1} } (a \geqslant 0,b \geqslant 0)$ thì ta đưa về hệ phương trình sau:
$\left\{ \begin{array}
  {a^2} + b = 5  \\
  {b^2} - a = 5  \\
\end{array}  \right. \to (a + b)(a - b + 1) = 0 \Rightarrow a - b + 1 = 0 \Rightarrow a = b - 1$
Vậy $\sqrt {x - 1}  + 1 = \sqrt {5 + \sqrt {x - 1} }  \Leftrightarrow \sqrt {x - 1}  = 5 - x \Rightarrow x = \frac{{11 - \sqrt {17} }}{2}$

Bài 4.
Giải phương trình: $\frac{{6 - 2x}}{{\sqrt {5 - x} }} + \frac{{6 + 2x}}{{\sqrt {5 + x} }} = \frac{8}{3}$
Giải:
Điều kiện: $ - 5 < x < 5$
Đặt $u = \sqrt {5 - x} ,v = \sqrt {5 - y} \,\,\left( {0 < u,v < \sqrt {10} } \right)$.
Khi đó ta được hệ phương trình: $\left\{ \begin{array}
  {u^2} + {v^2} = 10  \\
   - \frac{4}{u} - \frac{4}{v} + 2(u + z) = \frac{8}{3}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {(u + v)^2} = 10 + 2uv  \\
  (u + v)\left( {1 - \frac{2}{{uv}}} \right) = \frac{4}{3}  \\
\end{array}  \right.$

2.  Xây dựng phương trình vô tỉ từ hệ đối xứng loại II
Phương pháp:

Ta hãy đi tìm nguồn gốc của những bài toán giải phương trình bằng cách đưa về hệ đối xứng loại II
Ta  xét một hệ phương trình đối xứng loại II sau : $\left\{ \begin{array}
  {\left( {x + 1} \right)^2} = y + 2{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)  \\
  {\left( {y + 1} \right)^2} = x + 2{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (2)  \\
\end{array}  \right.$ việc giải hệ này thì  đơn giản
Bây giờ ta sẽ biến hệ thành phương trình bằng cách đặt $y = f\left( x \right)$sao cho (2)  luôn đúng , $y = \sqrt {x + 2}  - 1$, khi đó ta có phương trình : ${\left( {x + 1} \right)^2} = (\sqrt {x + 2}  - 1) + 1 \Leftrightarrow {x^2} + 2x = \sqrt {x + 2} $
Vậy để giải phương trình : ${x^2} + 2x = \sqrt {x + 2} $   ta đặt lại như trên và đưa về hệ
Bằng cách tương tự  xét hệ tổng quát dạng bậc 2 : $\left\{ \begin{array}
  {\left( {\alpha x + \beta } \right)^2} = ay + b  \\
  {\left( {\alpha y + \beta } \right)^2} = ax + b  \\
\end{array}  \right.$, ta sẽ xây dựng được phương trình  dạng sau : đặt $\alpha y + \beta  = \sqrt {ax + b} $, khi đó ta có phương trình : ${\left( {\alpha x + \beta } \right)^2} = \frac{a}{\alpha }\sqrt {ax + b}  + b - \frac{\beta }{\alpha }$
Tương tự cho bậc cao hơn : ${\left( {\alpha x + \beta } \right)^n} = \frac{a}{\alpha }\sqrt[n]{{ax + b}} + b - \frac{\beta }{\alpha }$
Tóm lại phương trình thường cho dưới dạng khai triển ta phải viết về dạng: ${\left( {\alpha x + \beta } \right)^n} = p\sqrt[n]{{a'x + b'}} + \gamma $  và đặt $\alpha y + \beta  = \sqrt[n]{{ax + b}}$ để đưa về hệ , chú ý về dấu của $\alpha $
Việc chọn $\alpha ;\beta $  thông thường chúng ta chỉ cần viết dưới dạng ${\left( {\alpha x + \beta } \right)^n} = p\sqrt[n]{{a'x + b'}} + \gamma $ là chọn được.

Bài 1:
Giải phương trình: ${x^2} - 2x = 2\sqrt {2x - 1} $
Giải:
Điều kiện: $x \geqslant \frac{1}{2}$
Ta có phương trình được viết lại là: ${(x - 1)^2} - 1 = 2\sqrt {2x - 1} $
Đặt $y - 1 = \sqrt {2x - 1} $ thì ta đưa về hệ sau: $\left\{ \begin{array}
  {x^2} - 2x = 2(y - 1)  \\
  {y^2} - 2y = 2(x - 1)  \\
\end{array}  \right.$
Trừ  hai vế của phương trình ta được $(x - y)(x + y) = 0$
Giải ra ta tìm được nghiệm của phương trình là: $x = 2 + \sqrt 2 $

Bài 2:
Giải phương trình: $2{x^2} - 6x - 1 = \sqrt {4x + 5} $
Giải:
Điều kiện $x \geqslant  - \frac{5}{4}$
Ta biến đổi phương trình như sau: $4{x^2} - 12x - 2 = 2\sqrt {4x + 5}  \Leftrightarrow {(2x - 3)^2} = 2\sqrt {4x + 5}  + 11$
Đặt $2y - 3 = \sqrt {4x + 5} $ ta được hệ phương trình sau:$\left\{ \begin{array}
  {(2x - 3)^2} = 4y + 5  \\
  {(2y - 3)^2} = 4x + 5  \\
\end{array}  \right. \Rightarrow (x - y)(x + y - 1) = 0$
Với $x = y \Rightarrow 2x - 3 = \sqrt {4x + 5}  \Rightarrow x = 2 + \sqrt 3 $
Với $x + y - 1 = 0 \Rightarrow y = 1 - x \to x = 1 - \sqrt 2 $
Kết luận: Nghiệm của phương trình là $\{ 1 - \sqrt 2 ;\,\,1 + \sqrt 3 \} $

3. Dạng hệ gần đối xứng
Phương pháp:

Ta xt hệ sau : $\left\{ \begin{array}
  {(2x - 3)^2} = 2y + x + 1  \\
  {(2y - 3)^2} = 3x + 1  \\
\end{array}  \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)$  đây không phải là hệ đối xứng loại 2  nhưng  chúng ta vẫn giải hệ được , và từ hệ này chúng ta xây dưng được bài toán phương trình sau :

Bài 1:
Giải phương trình: $4{x^2} + 5 - 13x + \sqrt {3x + 1}  = 0$
Nhận xét :
Nếu chúng  ta nhóm như những phương trình trước :${\left( {2x - \frac{{13}}{4}} \right)^2} = \sqrt {3x + 1}  - \frac{{33}}{4}$
Đặt $2y - \frac{{13}}{4} = \sqrt {3x + 1} $   thì chúng ta không thu được hệ  phương trình mà chúng ta có thể giải được.
Để thu được hệ (1)  ta đặt : $\alpha y + \beta  = \sqrt {3x + 1} $  , chọn $\alpha ,\beta $  sao cho hệ chúng ta có thể giải được , (đối xứng hoặc gần đối xứng )
 Ta có hệ : $\left\{ \begin{array}
  {\left( {\alpha y + \beta } \right)^2} = 3x + 1  \\
  4{x^2} - 13x + 5 =  - \alpha y - \beta   \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {\alpha ^2}{y^2} + 2\alpha \beta y - 3x + {\beta ^2} - 1 = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)  \\
  4{x^2} - 13x + \alpha y + 5 + \beta  = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (2)  \\
\end{array}  \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (*)$
Để giải hệ trên thì   ta lấy (1) nhân với k cộng với (2) và mong muốn của chúng ta
là có nghiệm $x = y$
Nên ta phải có : $\frac{{{\alpha ^2}}}{4} = \frac{{2\alpha \beta  - 3}}{{\alpha  - 13}} = \frac{{{\beta ^2} - 1}}{{5 + \beta }}$, ta chọn được ngay $\alpha  =  - 2;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta  = 3$
Ta có lời giải như sau :
Giải:
Điều kiện: $x \geqslant  - \frac{1}{3}$,
Đặt $\sqrt {3x + 1}  =  - (2y - 3),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (y \leqslant \frac{3}{2})$
Ta có hệ phương trình sau: $\left\{ \begin{array}
  {(2x - 3)^2} = 2y + x + 1  \\
  {(2y - 3)^2} = 3x + 1  \\
\end{array}  \right. \Rightarrow (x - y)(2x + 2y - 5) = 0$
Với $x = y \Rightarrow x = \frac{{15 - \sqrt {97} }}{8}$
Với $2x + 2y - 5 = 0 \Rightarrow x = \frac{{11 + \sqrt {73} }}{8}$
Kết luận: tập nghiệm của phương trình là: $\left\{ {\frac{{15 - \sqrt {97} }}{8};\frac{{11 + \sqrt {73} }}{8}} \right\}$
Chú ý:  khi đã làm quen, chúng ta có thể tìm ngay $\alpha ;\beta $ bằng  cách viết lại phương trình
ta viết lại phương trình như sau: ${(2x - 3)^2} =  - \sqrt {3x + 1}  + x + 4$
khi đó đặt $\sqrt {3x + 1}  =  - 2y + 3$  , nếu đặt $2y - 3 = \sqrt {3x + 1} $  thì chúng ta không thu được hệ như mong muốn , ta thấy dấu của $\alpha $  cùng dấu với dấu trước căn.
  
Một cách tổng quát:
Xét hệ: $\left\{ \begin{array}
  f(x) = A.x + B.y + m{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)  \\
  f(y) = A'.x + m'{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (2)  \\
\end{array}  \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} $  để hệ có nghiệm x = y thì : A-A’=B và  m=m’, 
Nếu từ (2) tìm được hàm ngược $y = g\left( x \right)$ thay vào (1)  ta được phương trình
Như vậy để xây dựng pt theo lối này ta cần xem xét để có hàm ngược và tìm được và hơn nữa hệ phải giải được.

BÀI TẬP RÈN LUYỆN:
Bài 1:
Giải phương trình sau:      $\sqrt {{x^3} - {x^2} - 1}  + \sqrt {{x^3} - {x^2} + 2}  = 3$        (1)
Giải:
Với điều kiện:
${x^3} - {x^2} - 1 \geqslant 0 \Rightarrow {x^3} - {x^2} + 2 > 0$
Đặt $\left\{ {\begin{array}{*{20}{c}}
  {u = \sqrt {{x^3} - {x^2} - 1} } \\
  {v = \sqrt {{x^3} - {x^2} + 2} }
\end{array}} \right.$ Với v > u ≥ 0
Phương trình (1) trở thành u + v = 0
Ta có hệ phương trình
$\begin{array}
  \left\{ {\begin{array}{*{20}{c}}
  {u + v = 3} \\
  {{v^2} - {u^2} = 3}
\end{array}} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u + v = 3} \\
  {(v + u)(v - u) = 3}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u + v = 3} \\
  {v - u = 1}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = 1} \\
  {v = 2}
\end{array}} \right.} \right.} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt {{x^3} + {x^2} - 1}  = 1} \\
  {\sqrt {{x^3} + {x^2} + 2}  = 2}
\end{array}} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{x^3} + {x^2} - 1 = 1} \\
  {{x^3} + {x^2} + 2 = 4}
\end{array}} \right.  \\
\end{array} $
$\begin{array}
   \Leftrightarrow {x^3} + {x^2} - 2 = 0  \\
   \Leftrightarrow (x - 1)({x^2} + 2x + 2) = 0  \\
   \Leftrightarrow x = 1(do{x^2} + 2x + 2 > 0)  \\
\end{array} $
Vậy phương trình đã cho có tập nghiệm là S = {1}

Bài 2:
Giải phương trình sau:      $\sqrt[4]{{18 + 5x}} + \sqrt[4]{{64 - 5x}} = 4$
Giải:
Với điều kiện
$\left\{ {\begin{array}{*{20}{c}}
  {18 + 5x \geqslant 0} \\
  {64 - 5x \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {x \geqslant  - \frac{{18}}{5}} \\
  {x \leqslant \frac{{64}}{5}}
\end{array} \Leftrightarrow  - \frac{{18}}{5} \leqslant x \leqslant \frac{{64}}{5}} \right.} \right.$            (*)
Đặt $u = \sqrt[4]{{18 + 5x}},v = \sqrt[4]{{64 - 5x}}$, với u ≥ 0, v  ≥ 0
Suy ra $\left\{ {\begin{array}{*{20}{c}}
  {{u^4} = 18 + 5x} \\
  {{v^4} = 64 - 5x}
\end{array}} \right.$
Phương trình đã cho tương đương với hệ:
$\left\{ {\begin{array}{*{20}{c}}
  {u + v = 4} \\
  {{u^4} + {v^4} = 82} \\
  {v \geqslant 0,v \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u + v = 4} \\
  {{{\left( {{u^2} + {v^2}} \right)}^2} - 2{{(uv)}^2} = 82} \\
  {v \geqslant 0,v \geqslant 0}
\end{array}} \right.} \right.$
Đặt A = u + v và P = u.v, ta có:
$\begin{array}
  \left\{ {\begin{array}{*{20}{c}}
  {S = 4} \\
  {{{\left( {{S^2} - 2P} \right)}^2} - 2{P^2} = 82} \\
  {P \geqslant 0,S \geqslant 0}
\end{array}} \right.  \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = 4} \\
  {{p^2} - 32P + 87 = 0} \\
  {P \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = 4} \\
  {P = 3 \vee P = 29} \\
  {P \geqslant 0}
\end{array}} \right.} \right.  \\
\end{array} $
(1)    Với S = 4, P = 3
u và v là nghiệm của phương trình:
${y^2} - 4y + 3 = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {y = 1} \\
  {y = 3}
\end{array}} \right.$
Do đó ta có: $\left\{ {\begin{array}{*{20}{c}}
  {u = 1} \\
  {v = 3}
\end{array} \vee \left\{ {\begin{array}{*{20}{c}}
  {u = 3} \\
  {v = 1}
\end{array}} \right.} \right.$
Suy ra$\left\{ {\begin{array}{*{20}{c}}
  {\sqrt[4]{{18 + 5x}} = 1} \\
  {\sqrt[4]{{64 - 5x}} = 3}
\end{array} \vee } \right.\left\{ {\begin{array}{*{20}{c}}
  {\sqrt[4]{{18 + 5x}} = 3} \\
  {\sqrt[4]{{64 - 5x}} = 1}
\end{array}} \right.$
$ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {18 + 5x = 1} \\
  {64 - 5x = 81}
\end{array} \vee } \right.\left\{ {\begin{array}{*{20}{c}}
  {18 + 5x = 81} \\
  {64 - 5x = 1}
\end{array}} \right.$
$ \Leftrightarrow x =  - \frac{{17}}{5} \vee x = \frac{{63}}{5}$ thoả (*)
(2)    Với S = 4, P = 29 $ \Rightarrow $ không tồn tại u và v
Vậy phương trình đã cho có 2 nghiệm là
$\left\{ {\begin{array}{*{20}{c}}
  {{x_1} =  - \frac{{17}}{5}} \\
  {{x_2} = \frac{{63}}{5}}
\end{array}} \right.$

Bài 3:
Giải phương trình sau:      $\sqrt[5]{{a + x}} + \sqrt[5]{{a - x}} = \sqrt[5]{{2a}}$
Giải:
Đặt $u = \sqrt[5]{{a + x}}$ và $v = \sqrt[5]{{a - x}}$, phương trình đã cho tương đương với hệ
$\left\{ {\begin{array}{*{20}{c}}
  {u + v = \sqrt[5]{{2a}}} \\
  {{u^5} + {v^5} = 2a}
\end{array}} \right.$            (*)
Ta có: ${u^5} + {v^5} = (u + v)({u^4} - {u^3}.v + {u^2}.{v^2} - u.{v^3} + {v^4}$
$\begin{array}
   = (u + v)\left( {{u^4} + {v^4} - u.v({u^2} + {v^2}) + {u^2}.{v^2}} \right)  \\
   = (u + v)\left\{ {{{\left[ {({u^2} + {v^2}) - 2u.v} \right]}^2} - 2{u^2}.{v^2} - u.v({u^2} + {v^2}) + 2{u^2}.{v^2} + {u^2}.{v^2}} \right\}  \\
\end{array} $
Đặt     S = u + v
P = u.v
Ta có: ${u^5} + {v^5} = S\left[ {{{\left( {{S^2} - 2P} \right)}^2} - P{S^2} + {P^2}} \right]$
Do đó ta có: (*)
$\begin{array}
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = \sqrt[5]{{2a}}} \\
  {S({S^4} - 5P{S^2} + 5{P^2}) = 2a}
\end{array}} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = \sqrt[5]{{2a}}} \\
  {{S^5} - 5P{S^3} + 5P{S^3} = 2a}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = \sqrt[5]{{2a}}} \\
  {5{P^2}S - 5P{S^3} = 0}
\end{array}} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {S = \sqrt[5]{{2a}}} \\
  {P = 0 \vee P = {S^2}}
\end{array}} \right.  \\
\end{array} $
(1)    Với $S = \sqrt[5]{{2a}},P = 0$
Ta có $\left\{ {\begin{array}{*{20}{c}}
  {u + v = \sqrt[5]{{2a}}} \\
  {u.v = 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = 0} \\
  {v = \sqrt[5]{{2a}}}
\end{array}} \right.} \right. \vee \left\{ {\begin{array}{*{20}{c}}
  {v = 0} \\
  {u = \sqrt[5]{{2a}}}
\end{array}} \right.$
Do dó ta có: $\left\{ {\begin{array}{*{20}{c}}
  {\sqrt[5]{{a + x}} = 0} \\
  {\sqrt[5]{{a - x}} = \sqrt[5]{{2a}}}
\end{array} \vee } \right.\left\{ {\begin{array}{*{20}{c}}
  {\sqrt[5]{{a + x}} = 0} \\
  {\sqrt[5]{{a + x}} = \sqrt[5]{{2a}}}
\end{array} \Leftrightarrow x =  - a \vee x = a} \right.$
(2)    Với $S = \sqrt[5]{{2a}},P = {S^2}$
Ta có ${S^2} - 4P = {S^2} - 4{S^2}$< 0. vô nghiệm
Vậy phương trình đã cho có 2 nghiệm là
$\left\{ {\begin{array}{*{20}{c}}
  {{x_1} =  - a} \\
  {{x_2} = a}
\end{array}} \right.$

Bài 4:
Giải phương trình sau:      $\sqrt[4]{{x + 8}} - \sqrt[4]{{x - 8}} = 2$
Giải:
Đặt $u = \sqrt[4]{{x + 8}},v = \sqrt[4]{{x - 8}}$ với u > v ≥ 0
Với điều kiện
$\left\{ {\begin{array}{*{20}{c}}
  {x + 8 \geqslant 0} \\
  {x - 8 \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {x \geqslant  - 8} \\
  {x \geqslant 8}
\end{array} \Leftrightarrow x \geqslant 8} \right.} \right.$        (*)
$ \Rightarrow {u^4} = x + 8,{v^4} = x - 8$
Phương trình đã cho $\sqrt[4]{{x + 8}} - \sqrt[4]{{x - 8}} = 2$    (1)
Tương đương với hệ
$\begin{array}
  \left\{ {\begin{array}{*{20}{c}}
  {u - v = 2} \\
  {{u^4} + {v^4} = 16} \\
  {u > v \geqslant 0}
\end{array}} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = v + 2} \\
  {(u - v)(u + v)({u^2} + {v^2}) = 16} \\
  {u > v \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = v + 2} \\
  {2(2v + 2)(2{v^2} + 4v + 4) = 0} \\
  {u > v \geqslant 0}
\end{array}} \right.} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = v + 2} \\
  {{u^3} + 3{v^2} + 4v + 2 = 2} \\
  {u > v \geqslant 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = v + 2} \\
  {v({v^2} + 3v + 4) = 0} \\
  {u > v \geqslant 0}
\end{array}} \right.} \right.  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = v + 2} \\
  {v = 0} \\
  {u > v \geqslant 0}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {u = 2} \\
  {v = 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[4]{{x + 8}} = 2} \\
  {\sqrt[4]{{x - 8}} = 0}
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {x + 8 = 16} \\
  {x - 8 = 0}
\end{array} \Leftrightarrow x = 8} \right.} \right.} \right.  \\
\end{array} $

Bài 5:
$\frac{1}{2} + \frac{1}{{\sqrt {2 - {x^2}} }} = 2$
Giải:
Điều kiện $2 - {x^2} > 0,x \ne 0 \Leftrightarrow 5\sqrt 2  < x < \sqrt 2 ,x \ne 0$
Đặt $y = \sqrt {2 - {x^2}} ,y > 0$. Ta có:
$(1) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\frac{1}{x} + \frac{1}{y} = 2(2)} \\
  {{x^2} + {y^2} = 2(3)} \\
  {y > 0}
\end{array}} \right.$        (*)
Từ (*)$ \Rightarrow 2{x^2}{y^2} - xy - 1 = 0$
$ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {xy = 1} \\
  {xy =  - \frac{1}{2}}
\end{array}} \right.$
a.    Xét xy = 1 so y > 0 nên x > 0
Ta có: $(2) \Rightarrow x + y = 2$
Ta có xy = 1 và x + y = 2 nên x, y là nghiệm của phương trình x2 – 2x + 1 = 0 $ \Rightarrow x = 1$
b.    Xét xy = - $\frac{1}{2}$. Tương tự ta được x = $ - \frac{{\sqrt 3  + 1}}{2}$
Vậy phương trình có tập nghiệm là $S = \left\{ {1; - \frac{{\sqrt 3  + 1}}{2}} \right\}$

Thẻ

Lượt xem

13617
Chat chit và chém gió
  • ๖ۣۜCold: rồi tên nào tên thật để biết đường mà lần chứ 5/30/2021 9:44:02 AM
  • Phương Linh: e tưởng a2 ko để ý chớ 5/30/2021 9:44:35 AM
  • ๖ۣۜCold: giờ tự nhiên thích để ý big_grin 5/30/2021 9:45:43 AM
  • Phương Linh: cj Thảo baby ko onl htn nữa chán ghê 5/30/2021 9:46:36 AM
  • ๖ۣۜCold: nhắn rủ vào đê 5/30/2021 9:47:38 AM
  • Phương Linh: ơ a ko nhắn nói e 5/30/2021 9:48:10 AM
  • ๖ۣۜCold: a biết gì đâu mà nhắn 5/30/2021 9:48:23 AM
  • Phương Linh: htrc còn nhắn cj ấy đc cơ mà 5/30/2021 9:48:49 AM
  • ๖ۣۜCold: hôm nào ? 5/30/2021 9:49:23 AM
  • Phương Linh: cái đợt chụp tn cho e xem kìa 5/30/2021 9:49:39 AM
  • ๖ۣۜCold: à 5/30/2021 9:51:02 AM
  • ๖ۣۜCold: được mỗi tin đấy xong hết luôn rồi đấy laughing) 5/30/2021 9:51:12 AM
  • Phương Linh: giờ ko nhắn nữa à 5/30/2021 9:52:17 AM
  • ๖ۣۜCold: thì đã bảo mỗi tin đấy thôi còn gì doh 5/30/2021 9:53:17 AM
  • Phương Linh: qua fb e kể cái này cho nghe này 5/30/2021 9:53:41 AM
  • Phương Linh: ở đây ko tiện 5/30/2021 9:53:46 AM
  • ๖ۣۜCold: ừm' 5/30/2021 9:54:03 AM
  • lea123824: star 5/31/2021 7:58:51 PM
  • lea123824: wave 5/31/2021 8:16:05 PM
  • vutienmanhthuongdinh21: hypnotized 6/18/2021 9:48:05 AM
  • nguyenson22102004z: wave 7/5/2021 10:13:38 PM
  • Linhdug2k6: Hello mn 7/11/2021 10:30:04 AM
  • vohuutronght2: hi mnsmug 7/14/2021 2:52:55 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: bh nhắn vô đây chắc chả còn ai rep :vvv 7/15/2021 2:40:58 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: Ngày xưa thì chưa kịp đọc đã trôi 7/15/2021 2:41:13 PM
  • bebeolamdo: hi happy 7/18/2021 7:39:51 PM
  • ๖ۣۜBossღ: yawn Dịch quá, thất học rồi 7/19/2021 8:33:49 AM
  • HauDueMatTroiVip: happy 7/29/2021 8:49:16 PM
  • HauDueMatTroiVip: Quang come back 7/29/2021 8:49:37 PM
  • meomeocutduoi:8/13/2021 12:27:44 AM
  • meomeocutduoi: tongue 8/13/2021 12:27:45 AM
  • meomeocutduoi: à nhông xê ô 8/13/2021 12:27:54 AM
  • meomeocutduoi: big_grin 8/13/2021 4:05:36 PM
  • thanhbinhyenbai: hế lô 8/15/2021 10:35:26 AM
  • Mchaau: Haii 8/20/2021 3:51:36 PM
  • Mchaau: :'winking 8/20/2021 3:51:47 PM
  • Mchaau: ;'winking 8/20/2021 3:51:53 PM
  • Mchaau: Ủa alo 8/20/2021 3:52:03 PM
  • Mchaau: U la tr 8/20/2021 3:52:06 PM
  • hellobaotvvn: hế lô 9/5/2021 6:03:15 PM
  • anh.ngochoang: wave 9/12/2021 10:34:56 AM
  • daidoan3107: hi 10/4/2021 3:12:33 PM
  • hatanphat201005: 🪓 cho một bô bây giờ 10/7/2021 2:57:30 PM
  • hatanphat201005: wave 10/7/2021 3:18:19 PM
  • hatanphat201005: http://statichtn.com/image/emoticons/wave.gif 10/7/2021 3:18:27 PM
  • deenhu23082008: hii mng 10/7/2021 11:05:49 PM
  • tuenhucinhdepp2308: hiii 10/7/2021 11:10:10 PM
  • tuenhucinhdepp2308: yawn 10/7/2021 11:10:36 PM
  • hatanphat201005: hi 10/8/2021 7:04:05 AM
  • hatanphat201005: có ai kg ? whistling 10/8/2021 7:04:57 AM
  • hatanphat201005: doh 10/8/2021 7:06:22 AM
  • hatanphat201005: doh 10/8/2021 7:12:25 AM
  • minhcc2009: hello các anh 10/19/2021 8:26:27 PM
  • minhcc2009: em là minh 2009 10/19/2021 8:26:34 PM
  • minhcc2009: trường Trung học Cơ Sở Xuân Thu 10/19/2021 8:26:51 PM
  • minhcc2009: Câu hỏi số 18/20 Điểm: 80 trên tổng số 100 Bật/Tắt âm thanh báo đúng/sai 10/19/2021 8:37:59 PM
  • Mưa Đêm: Hi mọi người 10/21/2021 12:08:12 AM
  • Mưa Đêm: Ui, lâu lắm rồi mới quay lại đây 10/21/2021 12:09:15 AM
  • zzzvuzzz.16510: hi 10/22/2021 8:18:11 AM
  • ducbanminh8: hello 10/25/2021 8:34:15 AM
  • heomoiletri2007: ? 10/26/2021 2:04:23 PM
  • heomoiletri2007: hello 10/26/2021 2:05:35 PM
  • Mưa Đêm: hiii 10/28/2021 11:52:28 PM
  • Minhtvno2: hi 10/30/2021 8:51:33 PM
  • Minhtvno2: hahaa cân cả hộithumbs_up 10/30/2021 8:53:27 PM
  • hatanphat201005: hi 11/3/2021 6:22:14 PM
  • hatanphat201005: transformertransformer 11/3/2021 6:57:05 PM
  • hatanphat201005: ko ai vô chánnnnnnnnnnnnnnnnn 11/4/2021 5:52:17 AM
  • hatanphat201005: worried 11/4/2021 5:53:40 AM
  • hatanphat201005: hi mn 11/11/2021 5:59:17 PM
  • Phương Trâm: hiiii 11/12/2021 3:27:57 PM
  • Phương Trâm: ai giỏi toán hong ạ có thể giúp mình ôn thi giữa kì được hông TvT 11/12/2021 3:28:05 PM
  • Quiss Buu: alo 11/20/2021 4:21:12 PM
  • Mưa Đêm: ô la 11/30/2021 4:21:44 AM
  • vuikieu238: alo 12/7/2021 9:36:20 AM
  • vuikieu238: :33 12/7/2021 9:36:27 AM
  • vuikieu238: nay mới biết có cái chỗ này luôn 12/7/2021 9:36:45 AM
  • ๖ۣۜBossღ: Mấy anh chị đâu hết rồi, vào ôn kỉ niệm nào. Lâu vl 5 năm rồi. 12/10/2021 8:55:11 PM
  • vohuuhung80: ê 12/11/2021 7:38:41 PM
  • vohuuhung80: mọi n 12/11/2021 7:38:46 PM
  • vohuuhung80: ai bt các chọn lớp ko ạ 12/11/2021 7:39:06 PM
  • anhvoviet123: uầy 12/22/2021 7:28:36 AM
  • anhvoviet123: vip nhỉ 12/22/2021 7:28:56 AM
  • anhvoviet123: alo 12/22/2021 7:29:16 AM
  • anhvoviet123: chả còn ai 12/22/2021 9:14:38 AM
  • anhvoviet123: I love you 12/22/2021 9:14:44 AM
  • anhvoviet123: 2k6 làm quen ah 12/22/2021 9:25:06 AM
  • anhvoviet123: Mình góp ý nhé. Ý kiến của mình là như này, mình nói ra nếu có mất lòng anh em thì mình cũng chịu, tại vì mình cũng chỉ muốn đóng góp một chút ý kiến cho anh em biết là mình cũng là một người có ý kiến, mình là con người không thích nói dài dòng, chỉ đơn giản muốn góp ý kiến cho mọi người biết thôi, mong mọi người hãy hiểu và thông cảm cho mình, mình xin góp ý một ý kiến cực kì ngắn gọn cho anh em hiểu mình không muốn vòng vo, nói dài chỉ là một cái ý kiến ngắn gọn không cần dài. Đấy nói tóm lại là mình góp ý vậy thôi còn anh em hiểu hay không thì cũng không biết! 12/22/2021 9:38:34 PM
  • phanhuukhanhabc: hello 1/27/2022 12:53:15 PM
  • phanhuukhanhabc: alo có ai ở nhà không ? 1/27/2022 12:53:45 PM
  • phanhuukhanhabc: wave 1/27/2022 12:54:27 PM
  • Mưa Đêm: 7 năm trôi qua nhanh thật, giờ chả còn ai ở đây sad 2/22/2022 1:44:57 AM
  • ๖ۣۜBossღ: Quá khứ dĩ vãng, không thể xóa nhòa broken_heart 2/22/2022 8:16:41 AM
  • Mưa Đêm: Hi Boss 2/23/2022 2:09:04 AM
  • C50™: :v 2/23/2022 6:51:37 PM
  • C50™: cũng 5 năm r 2/23/2022 6:51:56 PM
  • C50™: từ 2016 2/23/2022 6:54:47 PM
  • minhmama357: cccccccccccccc 3/6/2022 8:47:17 PM
  • nhungtongdp.12.13: mọi người ơi cíu 3/9/2022 12:25:36 AM
  • nhungtongdp.12.13: ai chỉ cho em cách xác định nghiệm của hệ bất phương trình 1 ẩn được k ạ huhu 3/9/2022 12:26:23 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • ahihi
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • .
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo9119* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minh
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • tranhai98
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trang
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • ☼SunShine❤️
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜBossღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • B҉ãO҉-t҉ố҉
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Hạ Vân
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • ☆☆Lãnh Hoàng Băng Ngọc ☆☆
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜNắng(M)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • ๖ۣۜNatsu
  • Băng
  • ๖ۣۜCold
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyendang241001
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Vũ Như Quỳnh
  • benganxd2509
  • pnt2912003
  • nhathan61
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Linh Lê Thùy
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • fbt1800555581
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • ๖ۣۜLãnh♌Băng ( ML)
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • Nguyen Le Na
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • Tuyết Nhi
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phúc Huy
  • Phùng THị Thu Hà
  • ๖ۣۜLãnh♌Huyết
  • ๖ۣۜNgược dòng thời gian
  • lehongminh22072001
  • Nguyễn Hồng Ngọc
  • ♓幸せ ♥╭╮♥ha ≧✯◡✯≦✌
  • admin
  • skud2003
  • Zidane
  • Cao Linh
  • Hạ Nhi
  • Kiệt2003
  • cuong3888684
  • Mây của trời cứ để gió cuốn đi
  • caodsao
  • le.tg.310314
  • hoa.khanh.lhyan2707
  • tuthaiduong012
  • aidhakfcgano1
  • hisname004
  • Tu hoc
  • honhutlinh
  • let02hb
  • vohieutrung99
  • laitridung2004
  • nguyenthuhangtdvp
  • thulively
  • btquyen11a2
  • giangbap0388
  • trung3152003
  • ntgu
  • ★F.29★
  • nguyenyen10082008
  • luongthimay21051981
  • nguyenngocminhtri.1233
  • 8a1day
  • thaithuhanglhp77
  • cuahanganhduc
  • ngolam230103
  • Uchiha Obito
  • thongoc1174
  • daihuenhatanh
  • phammaianh0210
  • thaonguyen.ht2404
  • thuythuypham1504
  • poiuytrewq
  • congtonle526
  • duolingo
  • duolingo
  • nducchinh8
  • huynguyen1032k5