PHƯƠNG PHÁP ĐẶT ẨN PHỤ ĐỂ GIẢI PHƯƠNG TRÌNH VÔ TỈ


Có 4 phương pháp đặt ẩn phụ chính:
1. Đặt ẩn phụ thông thường
2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến
3. Đặt ẩn phụ không hoàn toàn
4. Đặt ẩn phụ đưa về hệ phương trình

Phương pháp thứ 4 sẽ được tách riêng ra một chuyên đề riêng: “Chuyển phương trình vô tỉ về hệ phương trình”

CÁC PHƯƠNG PHÁP ĐẶT ẨN PHỤ:
1. Phương pháp đặt ẩn phụ thông thường
Phương pháp:

Đối với nhiều phương trình vô tỉ, để giải chúng  ta có thể đặt $t = f\left( x \right)$  và chú ý điều kiện của $t$nếu phương trình ban đầu trở thành phương trình chứa một biến $t$quan trọng hơn ta có thể giải được phương trình đó theo $t$ thì việc đặt phụ xem như “ hoàn toàn” .Nói chung những phương trình mà có thể đặt hoàn toàn $t = f\left( x \right)$  thường là những phương trình dễ .

Bài 1:
Giải phương trình: $\sqrt {x - \sqrt {{x^2} - 1} }  + \sqrt {x + \sqrt {{x^2} - 1} }  = 2$
Giải:
Đk: $x \geqslant 1$
Nhận xét. $\sqrt {x - \sqrt {{x^2} - 1} } .\sqrt {x + \sqrt {{x^2} - 1} }  = 1$
Đặt $t = \sqrt {x - \sqrt {{x^2} - 1} } $ thì phương trình có dạng: $t + \frac{1}{t} = 2 \Leftrightarrow t = 1$
Thay vào  tìm được $x = 1$

Bài 2:
 Giải phương trình: $2{x^2} - 6x - 1 = \sqrt {4x + 5} $
Giải:
Điều kiện: $x \geqslant  - \frac{4}{5}$
Đặt $t = \sqrt {4x + 5} (t \geqslant 0)$ thì $x = \frac{{{t^2} - 5}}{4}$. Thay vào ta có phương trình sau:
$2.\frac{{{t^4} - 10{t^2} + 25}}{{16}} - \frac{6}{4}({t^2} - 5) - 1 = t \Leftrightarrow {t^4} - 22{t^2} - 8t + 27 = 0$
$ \Leftrightarrow ({t^2} + 2t - 7)({t^2} - 2t - 11) = 0$
Ta tìm được bốn nghiệm là: ${t_{1,2}} =  - 1 \pm 2\sqrt 2 ;\,\,{t_{3,4}} = 1 \pm 2\sqrt 3 $
Do $t \geqslant 0$ nên  chỉ nhận các gái trị ${t_1} =  - 1 + 2\sqrt 2 ,{t_3} = 1 + 2\sqrt 3 $
Từ đó tìm được các nghiệm của phương trình l: $x = 1 - \sqrt 2 {\text{ va{\o} }}x = 2 + \sqrt 3 $
Cách khác: Ta có  thể bình phương hai vế của phương trình với điều kiện $2{x^2} - 6x - 1 \geqslant 0$
Ta được: ${x^2}{(x - 3)^2} - {(x - 1)^2} = 0$, từ đó ta tìm được nghiệm tương ứng.
Đơn giản nhất là ta đặt : $2y - 3 = \sqrt {4x + 5} $   và đưa về hệ đối xứng  

Bài  3:

Giải phương trình: $x + \sqrt {5 + \sqrt {x - 1} }  = 6$
Giải:
Điều kiện: $1 \leqslant x \leqslant 6$
Đặt $y = \sqrt {x - 1} (y \geqslant 0)$ thì phương trình trở thành: ${y^2} + \sqrt {y + 5}  = 5 \Leftrightarrow {y^4} - 10{y^2} - y + 20 = 0$( với $y \leqslant \sqrt 5 )$$ \Leftrightarrow ({y^2} + y - 4)({y^2} - y - 5) = 0$$ \Leftrightarrow y = \frac{{1 + \sqrt {21} }}{2}{\text{(loa\"i i)}},\,\,y = \frac{{ - 1 + \sqrt {17} }}{2}$
Từ đó ta tìm được các giá trị của $x = \frac{{11 - \sqrt {17} }}{2}$

Bài 4:
Giải phương trình  sau :$x = \left( {2004 + \sqrt x } \right){\left( {1 - \sqrt {1 - \sqrt x } } \right)^2}$
Giải:
ĐK $0 \leqslant x \leqslant 1$
Đặt $y = \sqrt {1 - \sqrt x } $  pttt$ \Leftrightarrow 2{\left( {1 - y} \right)^2}\left( {{y^2} + y - 1002} \right) = 0 \Leftrightarrow y = 1 \Leftrightarrow x = 0$

Bài 5:
Giải phương trình : ${x^2} + 2x\sqrt {x - \frac{1}{x}}  = 3x + 1$
Giải:
Điều kiện: $ - 1 \leqslant x < 0$
Chia cả hai vế cho x ta nhận được:$x + 2\sqrt {x - \frac{1}{x}}  = 3 + \frac{1}{x}$
Đặt $t = x - \frac{1}{x}$, ta giải được.

Bài 6:
Giải phương trình : ${x^2} + \sqrt[3]{{{x^4} - {x^2}}} = 2x + 1$
Giải: $x = 0$ không phải là nghiệm , Chia cả hai vế cho x ta được: $\left( {x - \frac{1}{x}} \right) + \sqrt[3]{{x - \frac{1}{x}}} = 2$
Đặt t=$\sqrt[3]{{x - \frac{1}{x}}}$,  Ta có  : ${t^3} + t - 2 = 0 \Leftrightarrow $$t = 1 \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2}$

Nhận xét: đối với cách đặt ẩn phụ như trên chúng ta chỉ giải  quyết được một lớp bài đơn giản, đôi khi phương trình đối với $t$ lại quá khó giải  

2.  Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến.
Phương pháp:

Chúng ta đã biết cách giải phương trình: ${u^2} + \alpha uv + \beta {v^2} = 0$   (1) bằng cách
Xét $v \ne 0$ phương trình trở thành  : ${\left( {\frac{u}{v}} \right)^2} + \alpha \left( {\frac{u}{v}} \right) + \beta  = 0$
$v = 0$ thử trực tiếp
Các trường hợp sau cũng đưa về được (1)
$a.A\left( x \right) + bB\left( x \right) = c\sqrt {A\left( x \right).B\left( x \right)} $
$\alpha u + \beta v = \sqrt {m{u^2} + n{v^2}} $
Chúng ta hãy thay các biểu thức $A(x) , B(x)$  bởi các biểu thức vô tỉ thì sẽ nhận được phương trình vô tỉ theo dạng này.

a) Phương trình dạng: $a.A\left( x \right) + bB\left( x \right) = c\sqrt {A\left( x \right).B\left( x \right)} $
Như vậy phương trình $Q\left( x \right) = \alpha \sqrt {P\left( x \right)} $ có thể giải bằng phương pháp trên nếu  
               $\left\{ \begin{array}
  P\left( x \right) = A\left( x \right).B\left( x \right)  \\
  Q\left( x \right) = aA\left( x \right) + bB\left( x \right)  \\
\end{array}  \right.$
Xuất phát từ đẳng thức :
              ${x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - x + 1} \right)$
              ${x^4} + {x^2} + 1 = \left( {{x^4} + 2{x^2} + 1} \right) - {x^2} = \left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)$
              ${x^4} + 1 = \left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)$
              $4{x^4} + 1 = \left( {2{x^2} - 2x + 1} \right)\left( {2{x^2} + 2x + 1} \right)$
Hãy tạo ra những phương trình vô tỉ dạng trên ví dụ như :
                        $4{x^2} - 2\sqrt 2 x + 4 = \sqrt {{x^4} + 1} $
Để có một phương trình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phương trình bậc hai $a{t^2} + bt - c = 0$  giải  “ nghiệm đẹp”

Bài 1:
Giải phương trình : $2\left( {{x^2} + 2} \right) = 5\sqrt {{x^3} + 1} $
Giải:
Đặt $u = \sqrt {x + 1} ,v = \sqrt {{x^2} - x + 1} $
phương trình trở thành : $2\left( {{u^2} + {v^2}} \right) = 5uv \Leftrightarrow \left[ \begin{array}
  u = 2v  \\
  u = \frac{1}{2}v  \\
\end{array}  \right.$
Tìm được: $x = \frac{{5 \pm \sqrt {37} }}{2}$

Bài 3:  
Giải phương trình :$2{x^2} + 5x - 1 = 7\sqrt {{x^3} - 1} $
Giải:
Đk: $x \geqslant 1$
Nhận xét : Ta viết     $\alpha \left( {x - 1} \right) + \beta \left( {{x^2} + x + 1} \right) = 7\sqrt {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} $
Đồng nhất thức  ta được  $3\left( {x - 1} \right) + 2\left( {x + x + 1} \right) = 7\sqrt {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} $
Đặt $u = x - 1 \geqslant 0{\kern 1pt} {\kern 1pt} {\kern 1pt} ,v = {x^2} + x + 1 > 0$, ta được:  $3u + 2v = 7\sqrt {uv}  \Leftrightarrow \left[ \begin{array}
  v = 9u  \\
  v = \frac{1}{4}u  \\
\end{array}  \right.$
Nghiệm :$x = 4 \pm \sqrt 6 $

Bài 4:
Giải phương trình :${x^3} - 3{x^2} + 2\sqrt {{{\left( {x + 2} \right)}^3}}  - 6x = 0$
Giải:
Nhận xét : Đặt $y = \sqrt {x + 2} $ ta biến pt trình về dạng phương trình thuần nhất bậc 3 đối với x và y :
${x^3} - 3{x^2} + 2{y^3} - 6x = 0 \Leftrightarrow {x^3} - 3x{y^2} + 2{y^3} = 0 \Leftrightarrow \left[ \begin{array}
  x = y  \\
  x =  - 2y  \\
\end{array}  \right.$
Pt có  nghiệm :$x = 2,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 2 - 2\sqrt 3 $

b).Phương trình dạng:  $\alpha u + \beta v = \sqrt {m{u^2} + n{v^2}} $
Phương trình cho ở dạng này thường khó “phát hiện “ hơn dạng trên , nhưng nếu ta bình phương hai vế thì đưa về được dạng trên.

Bài 1:
Giải phương trình : ${x^2} + 3\sqrt {{x^2} - 1}  = \sqrt {{x^4} - {x^2} + 1} $
Giải:
Ta đặt :$\left\{ \begin{array}
  u = {x^2}  \\
  v = \sqrt {{x^2} - 1}   \\
\end{array}  \right.$  khi đó phương trình trở thành : $u + 3v = \sqrt {{u^2} - {v^2}} $

Bài 2:
Giải phương trình : $\sqrt {{x^2} + 2x}  + \sqrt {2x - 1}  = \sqrt {3{x^2} + 4x + 1} $
Giải
:
Đk $x \geqslant \frac{1}{2}$.  Bình phương 2 vế ta có : $\sqrt {\left( {{x^2} + 2x} \right)\left( {2x - 1} \right)}  = {x^2} + 1 \Leftrightarrow \sqrt {\left( {{x^2} + 2x} \right)\left( {2x - 1} \right)}  = \left( {{x^2} + 2x} \right) - \left( {2x - 1} \right)$
Ta có thể đặt : $\left\{ \begin{array}
  u = {x^2} + 2x  \\
  v = 2x - 1  \\
\end{array}  \right.$  khi đó ta có hệ : $uv = {u^2} - {v^2} \Leftrightarrow \left[ \begin{array}
  u = \frac{{1 - \sqrt 5 }}{2}v  \\
  u = \frac{{1 + \sqrt 5 }}{2}v  \\
\end{array}  \right.$
Do $u,v \geqslant 0$. $u = \frac{{1 + \sqrt 5 }}{2}v \Leftrightarrow {x^2} + 2x = \frac{{1 + \sqrt 5 }}{2}\left( {2x - 1} \right)$

Bài 3: 

Giải phương trình : $\sqrt {5{x^2} - 14x + 9}  - \sqrt {{x^2} - x - 20}  = 5\sqrt {x + 1} $
Giải:
Đk $x \geqslant 5$. Chuyển vế bình phương ta được: $2{x^2} - 5x + 2 = 5\sqrt {\left( {{x^2} - x - 20} \right)\left( {x + 1} \right)} $
Nhận xét: Không tồn tại số $\alpha ,\beta $ để : $2{x^2} - 5x + 2 = \alpha \left( {{x^2} - x - 20} \right) + \beta \left( {x + 1} \right)$ vậy ta không thể đặt
$\left\{ \begin{array}
  u = {x^2} - x - 20  \\
  v = x + 1  \\
\end{array}  \right.$.
Nhưng may mắn ta có : $\left( {{x^2} - x - 20} \right)\left( {x + 1} \right) = \left( {x + 4} \right)\left( {x - 5} \right)\left( {x + 1} \right) = \left( {x + 4} \right)\left( {{x^2} - 4x - 5} \right)$
Ta viết lại phương trình:  $2\left( {{x^2} - 4x - 5} \right) + 3\left( {x + 4} \right) = 5\sqrt {({x^2} - 4x - 5)(x + 4)} $.
Đến đây bài toán được giải quyết .

3.  Phương pháp đặt ẩn phụ không hoàn toàn
Phương pháp:

Từ những phương trình tích $\left( {\sqrt {x + 1}  - 1} \right)\left( {\sqrt {x + 1}  - x + 2} \right) = 0$,$\left( {\sqrt {2x + 3}  - x} \right)\left( {\sqrt {2x + 3}  - x + 2} \right) = 0$
Khai  triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát .
Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau .

Bài 1:
Giải phương trình :${x^2} + \left( {3 - \sqrt {{x^2} + 2} } \right)x = 1 + 2\sqrt {{x^2} + 2} $
Giải:
$t = \sqrt {{x^2} + 2} $ , ta có: ${t^2} - \left( {2 + x} \right)t - 3 + 3x = 0 \Leftrightarrow \left[ \begin{array}
  t = 3  \\
  t = x - 1  \\
\end{array}  \right.$

Bài 2:
Giải phương trình : $\left( {x + 1} \right)\sqrt {{x^2} - 2x + 3}  = {x^2} + 1$
Giải:
Đặt : $t = \sqrt {{x^2} - 2x + 3} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t \geqslant \sqrt 2 $
Khi đó phương trình trở thành : $\left( {x + 1} \right)t = {x^2} + 1$$ \Leftrightarrow {x^2} + 1 - \left( {x + 1} \right)t = 0$
Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t : ${x^2} - 2x + 3 - \left( {x + 1} \right)t + 2\left( {x - 1} \right) = 0 \Leftrightarrow {t^2} - \left( {x + 1} \right)t + 2\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}
  t = 2  \\
  t = x - 1  \\
\end{array}  \right.$
Từ một phương trình đơn giản : $\left( {\sqrt {1 - x}  - 2\sqrt {1 + x} } \right)\left( {\sqrt {1 - x}  - 2 + \sqrt {1 + x} } \right) = 0$, khai triển ra ta sẽ được pt sau

Bài 3:   
Giải phương trình : $4\sqrt {x + 1}  - 1 = 3x + 2\sqrt {1 - x}  + \sqrt {1 - {x^2}} $
Giải:
Nhận xét : đặt $t = \sqrt {1 - x} $, pt trở thành  $4\sqrt {1 + x}  = 3x + 2t + t\sqrt {1 + x} $  (1)
Ta rút  $x = 1 - {t^2}$ thay vào thì được pt: $3{t^2} - \left( {2 + \sqrt {1 + x} } \right)t + 4\left( {\sqrt {1 + x}  - 1} \right) = 0$
Nhưng không có  sự may mắn để giải được phương trình  theo t   $\Delta  = {\left( {2 + \sqrt {1 + x} } \right)^2} - 48\left( {\sqrt {x + 1}  - 1} \right)$ không có dạng bình phương .
Muốn đạt được mục đích trên thì ta phải tách  3x  theo  ${\left( {\sqrt {1 - x} } \right)^2},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\left( {\sqrt {1 + x} } \right)^2}$
Cụ thể như sau : $3x =  - \left( {1 - x} \right) + 2\left( {1 + x} \right)$   thay vào pt  (1)

Bài 4:
Giải phương trình: $2\sqrt {2x + 4}  + 4\sqrt {2 - x}  = \sqrt {9{x^2} + 16} $
Giải:
Bình phương  2 vế phương trình: $4\left( {2x + 4} \right) + 16\sqrt {2\left( {4 - {x^2}} \right)}  + 16\left( {2 - x} \right) = 9{x^2} + 16$
Ta đặt : $t = \sqrt {2\left( {4 - {x^2}} \right)}  \geqslant 0$. Ta được: $9{x^2} - 16t - 32 + 8x = 0$
Ta phải tách $9{x^2} = \alpha 2\left( {4 - {x^2}} \right) + \left( {9 + 2\alpha } \right){x^2} - 8\alpha $ làm sao cho ${\Delta _t}$ có dạng số chính phương .
Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích

BÀI TẬP RÈN LUYỆN
Bài 1:

$\sqrt {x + 1}  + \sqrt {3 - x}  - \sqrt {(x + 1)(3 - x)}  = n$            (1)
a/ Giải phương trình n =  2
b/ Tìm các giá trị của n để phương trình có nghiệm
Giải:
Điều kiện
$\left\{ {\begin{array}{*{20}{c}}
  {x + 1 \geqslant 0} \\
  {3 - x \geqslant 0}
\end{array} \Leftrightarrow  - 1 \leqslant x \leqslant 3} \right.$
Đặt ẩn phụ $t = \sqrt {x + 1}  + \sqrt {3 - x} ,t \geqslant 0$
Khi đó ${t^2} = 4 + 2\sqrt {(x + 1)(3 - x)} $
Hay $2\sqrt {(x + 1)(3 - x)}  = {t^2} - 4$                (2)
a/ Với n = 2 và ẩn phụ t, phương trình (1) trở thành.
$\begin{array}
  2t - ({t^2} - 4) = 4  \\
   \Leftrightarrow {t^2} - 2t = 0  \\
   \Leftrightarrow {t_1} = 0,{t_2} = 2  \\
\end{array} $
Dễ thấy t1 = 0 không thoả (2). Thay t2 = 2 vào (2) được $\sqrt {(x + 1)(3 - x)}  = 0, \Rightarrow {x_1} =  - 1,{x_2} = 3$, thoả điều kiện ban đầu.
b/ Đặt ẩn phụ t như trên, phương trình (1) trở thành:
$\begin{array}
  2t - ({t^2} - 4) = 2n  \\
   \Leftrightarrow {t^2} - 2t + 2n - 4 = 0  \\
\end{array} $
+ $\Delta  = 5 - 2n \geqslant 0$ thì phương trình có nghiệm
$\left\{ {\begin{array}{*{20}{c}}
  {{t_1} = 1 + \sqrt {5 - 2n} } \\
  {{t_2} = 1 - \sqrt {5 - 2n} }
\end{array}} \right.$
Để phương trình có nghiệm thì $2 \leqslant t \leqslant 2\sqrt 2 $ (theo công thức tổng quát ở trên).
Với t2 không thoả mãn.
Với t1 ta có $2 \leqslant 1 + \sqrt {5 - 2n}  \leqslant 2\sqrt 2 $$ \Leftrightarrow 2\sqrt 2  - 2 \leqslant n \leqslant 2$
Điều kiện này bảo đảm phương trình (2) có nghiệm x. Vậy phương trình (1) có nghiệm khi và chỉ khi $2\sqrt 2  - 2 \leqslant n \leqslant 2$

Bài 2:
$\sqrt {x + 6\sqrt {x - 9} }  + \sqrt {x - 6\sqrt {x - 9} }  = \frac{{x + m}}{6}$
a/ Giải phương trình với m = 23
b/ Tìm các giá trị của m để phương trình có nghiệm.
Giải:
Điều kiện $x - 9 \geqslant 0 \Leftrightarrow x \geqslant 9$
Đặt ẩn phụ $t = \sqrt {x - 9} $. Khi đó x = t2 + 9
Phương trình đã cho trở thành:
$\begin{array}
  6\left( {\sqrt {{{(1 + 3)}^2}}  + \sqrt {{{(x - 3)}^2}} } \right) = {t^2} + 9 + m  \\
   \Leftrightarrow 6\left( {\left| {t + 3} \right| + \left| {t - 3} \right|} \right) = {t^2} + 9 + m  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{t^2} - 12t + 9 + m = 0,t \geqslant 0} \\
  {{t^2} - 27 + m = 0,0 \leqslant t \leqslant 3}
\end{array}} \right.  \\
\end{array} $
a/ Với m = 23 có:
$\left\{ {\begin{array}{*{20}{c}}
  {{t^2} - 12t + 32 = 0,t \geqslant 3} \\
  {{t^2} = 4,0 \leqslant t \leqslant 3}
\end{array}} \right.$
     Giải ra ta được t1 = 8, t2 = 4, t3 = 2 nên phương trình có 3 nghiệm là x1=73, x2 = 25, x3 = 13.
b/ Với t ≥ 3 thì t2 – 12t + 9 + m = 0
   $ \Leftrightarrow {\left( {t - 6} \right)^2} = 27 - m$
Phương trình này có nghiệm khi 18 < m ≤ 27
Vậy phương trình có nghiệm khi m ≤ 27.

Bài 3:
Giải phương trình:      $x + \frac{x}{{\sqrt {{x^2} - 1} }} = \frac{{35}}{{12}}$     (1)
Giải:
Điều kiện x2 – 1 > 0, x > 0 $ \Leftrightarrow $ x > 1
Bình phương 2 vế của (1), ta có:
${x^2} + \frac{{{x^2}}}{{{x^2} - 1}} + \frac{{2{x^2}}}{{\sqrt {{x^2} - 1} }} = \frac{{1225}}{{144}}$    
$ \Leftrightarrow \frac{{{x^4}}}{{{x^2} - 1}} + \frac{{2{x^2}}}{{\sqrt {{x^2} - 1} }} = \frac{{1225}}{{144}}$                (2)
Đặt $t = \frac{{{x^2}}}{{\sqrt {{x^2} - 1} }}$, với t > 0, ta có
(2) $ \Leftrightarrow {t^2} + 2t - \frac{{1225}}{{144}} = 0$                (3)
Phương trình (3) có 2 nghiệm trái dấu.
$\left\{ {\begin{array}{*{20}{c}}
  {{t_1} = \frac{{25}}{{12}}} \\
  {{t_2} =  - \frac{{49}}{{12}}}
\end{array}} \right.$                                                                                            
+ Với ${t_1} = \frac{{25}}{{12}}$
$ \Rightarrow 12({x^2} - 1) - 25\sqrt {{x^2} - 1}  + 12 = 0$            (4)
Đặt $y = \sqrt {{x^2} - 1} ,y > 0$. Ta có
$\begin{array}
  (4) \Leftrightarrow 12{y^2} - 25y + 12 = 0  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {y = \frac{4}{3}} \\
  {y = \frac{3}{4}}
\end{array}} \right.  \\
\end{array} $
Suy ra phương trình đã cho có 2 nghiệm:
$\left[ {\begin{array}{*{20}{c}}
  {x = \frac{5}{4}} \\
  {x = \frac{5}{3}}
\end{array}} \right.$
Vậy nghiệm của phương trình là $S = \left\{ {\frac{5}{4};\frac{5}{3}} \right\}$

Bài 4:
Giải phương trình:      $\sqrt[3]{{{{(x + a)}^2}}} + \sqrt[3]{{{{(x + a)}^2}}} + \sqrt[3]{{({x^2} - {a^2})}} = \sqrt[3]{{{a^2}}}$
Giải:
Đặt y = x + a, z = x – a
Nhân lượng liên hiệp
$\begin{array}
   \Rightarrow y - x = \sqrt[3]{{{a^2}}}\left( {\sqrt[3]{y} - \sqrt[3]{z}} \right) = 2a  \\
   \Rightarrow \sqrt[3]{y} - \sqrt[3]{z} = 2\sqrt[3]{a}  \\
\end{array} $
Lập phương 2 vế phương trình ta được
- yz = a2
$ \Rightarrow $ x = 0 (thử lại thoả)
Vậy phương trình đã cho có nghiệm x = 0

Bài 5:
Giải phương trình:      $\sqrt[4]{{629 - x}} + \sqrt[4]{{77 + x}} = 8$
Giải:
Đặt $\left\{ \begin{array}
  \,u = \sqrt[4]{{629 - x}}  \\
  \,v = \sqrt[4]{{77 + x}}  \\
\end{array}  \right.$
$ \Rightarrow u + v = 8,{u^4} + {v^4} = 706$
Đặt t = uv
$\begin{array}
   \Rightarrow {t^2} - 128t + 1695 = 0  \\
   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {t = 15} \\
  {t = 113}
\end{array}} \right.  \\
\end{array} $
Với t = 15 $ \Rightarrow $ x = 4
Với t = 113 $ \Rightarrow $ x = 548
Thử lại ta thấy tập nghiêm của phương trình là $S = \left\{ {4;548} \right.{\text{\} }}$

Bài 6:
Giải phương trình:      $\sqrt {1 + \sqrt {1 - {x^2}} } \left( {\sqrt {(1 + x} {)^3} - \sqrt {{{\left( {1 - x} \right)}^3}} } \right) = 2 + \sqrt {1 - {x^2}} $
Giải:
Điều kiện
-1 ≤ x ≤ 1
Đặt $u = \sqrt {1 + x} ,v = \sqrt {1 - x} $, với u, v > 0
$ \Rightarrow u.v = \sqrt {1 - {x^2}} ,{u^2} + {v^2} = 2,{u^2} - {v^2} = 2x$
Phương trình đã cho trở thành
$\begin{array}
  \sqrt {\frac{{{u^2} + {v^2}}}{2}}  + u.v({u^3} - {v^3}) = 2 + u.v  \\
   \Leftrightarrow \frac{1}{{\sqrt 2 }}(u + v)(u - v)({u^2} + uv + {v^2}) = 2 + u.v  \\
   \Rightarrow \frac{1}{{\sqrt 2 }}2x(2 + uv + {v^2}) = 2 + u.v  \\
   \Rightarrow x = \frac{{\sqrt 2 }}{2}  \\
\end{array} $
Thử lại ta thấu tập nghiệp của phương trình đã cho là $S = \left\{ {\frac{{\sqrt 2 }}{2}} \right\}$

cũng đc . on lai kien thuc –  kudoshinichi131100 24-04-16 12:47 AM

Thẻ

Lượt xem

94529
Chat chit và chém gió
  • duolingo: hi 3/22/2021 5:50:29 PM
  • duolingo: thumbs_down 3/22/2021 6:21:55 PM
  • duolingo: uuuhj 3/22/2021 6:22:02 PM
  • duolingo: ijj 3/22/2021 6:22:35 PM
  • duolingo: time_out 3/22/2021 6:23:37 PM
  • duolingo: broken_heartjjh 3/22/2021 6:24:02 PM
  • duolingo: at_wits_end 3/22/2021 6:24:21 PM
  • duolingo: laughingi 3/22/2021 6:24:35 PM
  • duolingo: kjk 3/22/2021 6:24:53 PM
  • duolingo: chicken8 3/22/2021 6:25:15 PM
  • duolingo: surpriseoooo 3/22/2021 6:25:45 PM
  • lact06221: alo 3/24/2021 11:27:22 PM
  • lact06221: in trên này kiểu gì nhỉ mn 3/24/2021 11:27:39 PM
  • lact06221: alo 3/24/2021 11:29:30 PM
  • duolingo: 0 3/25/2021 5:17:26 PM
  • duolingo: b 3/25/2021 5:17:49 PM
  • duolingo: 6 3/25/2021 5:17:55 PM
  • duolingo: hh 3/25/2021 5:18:01 PM
  • duolingo: y 3/25/2021 5:18:15 PM
  • duolingo: y 3/25/2021 5:18:21 PM
  • duolingo: hhhhh 3/25/2021 5:18:38 PM
  • duolingo: big_griny 3/25/2021 5:18:56 PM
  • duolingo: hug 3/25/2021 5:19:15 PM
  • duolingo: yg 3/25/2021 5:19:22 PM
  • duolingo: on_the_phoneygy 3/25/2021 5:20:16 PM
  • duolingo: n 3/26/2021 11:05:23 AM
  • ๖ۣۜBossღ: broken_heartbroken_heartbroken_heartbroken_heart 5 năm rồi, HTN vẫn còn đó, chỉ là chung ta không onl nữa rồi 3/27/2021 8:43:11 PM
  • duolingo: laughing 4/1/2021 10:35:42 AM
  • ๖ۣۜDevilღ: mà vào vẫn có mấy đứa spam 4/2/2021 1:51:52 PM
  • ๖ۣۜDevilღ: sợ thật 4/2/2021 1:51:56 PM
  • duolingo: star 4/21/2021 6:04:16 AM
  • duolingo: hello:- 4/25/2021 7:22:52 AM
  • HauDueMatTroiLimited: Thiếu t cái là HTN hoang vắng hẳn )))) 5/1/2021 9:22:43 PM
  • HauDueMatTroiLimited: Chúc mừng ngày quốc tế lao động và hậu 30/4 5/1/2021 9:23:16 PM
  • ๖ۣۜTQT☾♋☽: một thời để nhớ 5/8/2021 10:33:06 AM
  • duolingo: hello 5/16/2021 5:27:44 PM
  • duolingo: hellolaughing 5/17/2021 5:51:28 AM
  • nguyenhoa05122004: hì nhô 5/18/2021 2:59:56 PM
  • nguyenhoa05122004: mn kết bạn fb mừn đuy 5/18/2021 3:00:42 PM
  • nguyenhoa05122004: fb mai hoa lè 5/18/2021 3:00:47 PM
  • nguyenhoa05122004: cho dễ nói chuyện hiu hiu 5/18/2021 3:01:06 PM
  • ๖ۣۜBossღ: oh_go_on 5/21/2021 11:13:26 AM
  • ๖ۣۜCold: cham 5/30/2021 9:05:05 AM
  • ๖ۣۜCold: chấm 5/30/2021 9:05:17 AM
  • ๖ۣۜCold: doh 5/30/2021 9:16:43 AM
  • Linh Lê Thùy: coffee đóng mạng nhện luôn web r 5/30/2021 9:29:04 AM
  • ๖ۣۜCold: đù 5/30/2021 9:34:44 AM
  • ๖ۣۜCold: hế lô 5/30/2021 9:34:49 AM
  • ๖ۣۜCold: hao ô a diu ? 5/30/2021 9:35:10 AM
  • hoanglinh04: đây này a2 5/30/2021 9:38:46 AM
  • ๖ۣۜCold: bé Linh gì kia đâu r ? 5/30/2021 9:39:26 AM
  • ๖ۣۜCold: nick cũ của e đúng ko ? 5/30/2021 9:39:38 AM
  • ๖ۣۜCold: rồi cuối cùng tên nào là tên thật ? 5/30/2021 9:40:19 AM
  • Phương Linh: nik cũ á ? 5/30/2021 9:40:55 AM
  • Phương Linh: có à ? 5/30/2021 9:41:03 AM
  • Phương Linh: mất lâu r 5/30/2021 9:41:07 AM
  • ๖ۣۜCold: bớt lươn 5/30/2021 9:42:12 AM
  • ๖ۣۜCold: cái câu đóng mạng nhện kia nãy ko phải bên mess nhắn rồi à 5/30/2021 9:42:44 AM
  • Phương Linh: laughing) Nguyễn Hoàng Phương Linh tên thật khổ 5/30/2021 9:42:58 AM
  • ๖ۣۜCold: rồi tên nào tên thật để biết đường mà lần chứ 5/30/2021 9:44:02 AM
  • Phương Linh: e tưởng a2 ko để ý chớ 5/30/2021 9:44:35 AM
  • ๖ۣۜCold: giờ tự nhiên thích để ý big_grin 5/30/2021 9:45:43 AM
  • Phương Linh: cj Thảo baby ko onl htn nữa chán ghê 5/30/2021 9:46:36 AM
  • ๖ۣۜCold: nhắn rủ vào đê 5/30/2021 9:47:38 AM
  • Phương Linh: ơ a ko nhắn nói e 5/30/2021 9:48:10 AM
  • ๖ۣۜCold: a biết gì đâu mà nhắn 5/30/2021 9:48:23 AM
  • Phương Linh: htrc còn nhắn cj ấy đc cơ mà 5/30/2021 9:48:49 AM
  • ๖ۣۜCold: hôm nào ? 5/30/2021 9:49:23 AM
  • Phương Linh: cái đợt chụp tn cho e xem kìa 5/30/2021 9:49:39 AM
  • ๖ۣۜCold: à 5/30/2021 9:51:02 AM
  • ๖ۣۜCold: được mỗi tin đấy xong hết luôn rồi đấy laughing) 5/30/2021 9:51:12 AM
  • Phương Linh: giờ ko nhắn nữa à 5/30/2021 9:52:17 AM
  • ๖ۣۜCold: thì đã bảo mỗi tin đấy thôi còn gì doh 5/30/2021 9:53:17 AM
  • Phương Linh: qua fb e kể cái này cho nghe này 5/30/2021 9:53:41 AM
  • Phương Linh: ở đây ko tiện 5/30/2021 9:53:46 AM
  • ๖ۣۜCold: ừm' 5/30/2021 9:54:03 AM
  • lea123824: star 5/31/2021 7:58:51 PM
  • lea123824: wave 5/31/2021 8:16:05 PM
  • vutienmanhthuongdinh21: hypnotized 6/18/2021 9:48:05 AM
  • nguyenson22102004z: wave 7/5/2021 10:13:38 PM
  • Linhdug2k6: Hello mn 7/11/2021 10:30:04 AM
  • vohuutronght2: hi mnsmug 7/14/2021 2:52:55 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: bh nhắn vô đây chắc chả còn ai rep :vvv 7/15/2021 2:40:58 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: Ngày xưa thì chưa kịp đọc đã trôi 7/15/2021 2:41:13 PM
  • bebeolamdo: hi happy 7/18/2021 7:39:51 PM
  • ๖ۣۜBossღ: yawn Dịch quá, thất học rồi 7/19/2021 8:33:49 AM
  • HauDueMatTroiVip: happy 7/29/2021 8:49:16 PM
  • HauDueMatTroiVip: Quang come back 7/29/2021 8:49:37 PM
  • meomeocutduoi:8/13/2021 12:27:44 AM
  • meomeocutduoi: tongue 8/13/2021 12:27:45 AM
  • meomeocutduoi: à nhông xê ô 8/13/2021 12:27:54 AM
  • meomeocutduoi: big_grin 8/13/2021 4:05:36 PM
  • thanhbinhyenbai: hế lô 8/15/2021 10:35:26 AM
  • Mchaau: Haii 8/20/2021 3:51:36 PM
  • Mchaau: :'winking 8/20/2021 3:51:47 PM
  • Mchaau: ;'winking 8/20/2021 3:51:53 PM
  • Mchaau: Ủa alo 8/20/2021 3:52:03 PM
  • Mchaau: U la tr 8/20/2021 3:52:06 PM
  • hellobaotvvn: hế lô 9/5/2021 6:03:15 PM
  • anh.ngochoang: wave 9/12/2021 10:34:56 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • ahihi
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • .
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo9119* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minh
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • tranhai98
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trang
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • ☼SunShine❤️
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜBossღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • B҉ãO҉-t҉ố҉
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Hạ Vân
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • ☆☆Lãnh Hoàng Băng Ngọc ☆☆
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜNắng(M)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • ๖ۣۜNatsu
  • Băng
  • ๖ۣۜCold
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyendang241001
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Vũ Như Quỳnh
  • benganxd2509
  • pnt2912003
  • nhathan61
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Linh Lê Thùy
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • fbt1800555581
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • ๖ۣۜLãnh♌Băng ( ML)
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • Nguyen Le Na
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • Tuyết Nhi
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phúc Huy
  • Phùng THị Thu Hà
  • ๖ۣۜLãnh♌Huyết
  • ๖ۣۜNgược dòng thời gian
  • lehongminh22072001
  • Nguyễn Hồng Ngọc
  • ♓幸せ ♥╭╮♥ha ≧✯◡✯≦✌
  • admin
  • skud2003
  • Zidane
  • Cao Linh
  • Hạ Nhi
  • Kiệt2003
  • cuong3888684
  • Mây của trời cứ để gió cuốn đi
  • caodsao
  • le.tg.310314
  • hoa.khanh.lhyan2707
  • tuthaiduong012
  • aidhakfcgano1
  • hisname004
  • Tu hoc
  • honhutlinh
  • let02hb
  • vohieutrung99
  • laitridung2004
  • nguyenthuhangtdvp
  • thulively
  • btquyen11a2
  • giangbap0388
  • trung3152003
  • ntgu
  • ★F.29★
  • nguyenyen10082008
  • luongthimay21051981
  • nguyenngocminhtri.1233
  • 8a1day
  • thaithuhanglhp77
  • cuahanganhduc
  • ngolam230103
  • Uchiha Obito
  • thongoc1174
  • daihuenhatanh
  • phammaianh0210
  • thaonguyen.ht2404
  • thuythuypham1504
  • poiuytrewq
  • congtonle526
  • duolingo
  • duolingo
  • nducchinh8