ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN


Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác

1. Định tính tam giác:
a) Tam giác đều:

Đối với loại bài nhận dạng tam giác đều, ta chỉ cần giải bất đẳng thức lượng giác và chỉ ra điều kiện xảy ra dấu bằng của BĐT đó. Ta sẽ xét các ví dụ sau để thấy rõ điều đó.

Ví dụ 1:
CMR $\Delta ABC$đều khi thỏa: ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Lời giải:
Theo Bunhiacốpxki ta có:
${\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 3\left( {{m_a}^2 + {m_b}^2 + {m_c}^2} \right)$
$\begin{array}
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant \frac{9}{4}\left( {{a^2} + {b^2} + {c^2}} \right)  \\
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}\left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)  \\
\end{array} $
mà   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
$ \Rightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}.\frac{9}{4} = \frac{{81}}{4}{R^2}$
$ \Rightarrow $ ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều $ \Rightarrow $Đpcm.

Ví dụ 2:    
CMR nếu $\sin \frac{A}{2}\sin \frac{B}{2} = \frac{{\sqrt {ab} }}{{4c}}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\frac{{\sqrt {ab} }}{{4c}} \leqslant \frac{{a + b}}{{8c}} = \frac{{2R\left( {\sin A + \sin B} \right)}}{{2R.8\sin C}} = \frac{{2R.2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2}}}{{2R.8.2\sin \frac{C}{2}\cos \frac{C}{2}}} = \frac{{\cos \frac{{A - B}}{2}}}{{8\sin \frac{C}{2}}} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}$
$\begin{array}
   \Rightarrow \sin \frac{A}{2}\sin \frac{B}{2} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}  \\
   \Leftrightarrow 8\cos \frac{{A + B}}{2}\sin \frac{A}{2}\sin \frac{B}{2} \leqslant 1  \\
   \Leftrightarrow 4\cos \frac{{A + B}}{2}\left( {\cos \frac{{A - B}}{2} - \cos \frac{{A + B}}{2}} \right) - 1 \leqslant 0  \\
\end{array} $
$\begin{array}
   \Leftrightarrow 4{\cos ^2}\frac{{A + B}}{2} - 4\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 1 \geqslant 0  \\
   \Leftrightarrow {\left( {2\cos \frac{{A + B}}{2} - \cos \frac{{A - B}}{2}} \right)^2} + {\sin ^2}\frac{{A - B}}{2} \geqslant 0  \\
    \\
\end{array} $
$ \Rightarrow $ Đpcm.
    
Ví dụ 3:
CMR $\Delta ABC$đều khi nó thỏa: $2\left( {{h_a} + {h_b} + {h_c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
Lời giải:
Theo đề bài ta có:
$2.2p\left( {\frac{r}{a} + \frac{r}{b} + \frac{r}{c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
$\begin{array}
   \Leftrightarrow \frac{r}{a} + \frac{r}{b} + \frac{r}{c} = \frac{{\sqrt 3 }}{2}  \\
   \Leftrightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{{\sqrt 3 }}{2}  \\
\end{array} $
Ta lại có:  $\frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} \leqslant \frac{1}{4}\left( {\frac{1}{{\cot \frac{A}{2}}} + \frac{1}{{\cot \frac{B}{2}}}} \right) = \frac{1}{4}\left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)$
Tương tự ta có:
$\frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} = \frac{1}{4}\left( {\tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
$\frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{1}{4}\left( {\tan \frac{C}{2} + \tan \frac{A}{2}} \right)$
$\begin{array}
   \Rightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right)  \\
   \Rightarrow \frac{{\sqrt 3 }}{2} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right) \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu thỏa $S = 3Rr\frac{{\sqrt 3 }}{2}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\begin{array}
  S = 2{R^2}\sin A\sin B\sin C = 2.{R^2}.2.2.2.\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
   = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}.4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = r4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
\end{array} $
$ \leqslant r4R\frac{{3\sqrt 3 }}{8} = \frac{{3\sqrt 3 }}{2}Rr$
$ \Rightarrow $ Đpcm.

Ví dụ 5:
CMR $\Delta ABC$đều khi nó thỏa ${m_a}{m_b}{m_c} = pS$
Lời giải:
Ta có:  ${m_a}^2 = \frac{1}{4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) = \frac{1}{4}\left( {{b^2} + {c^2} - 2bc\cos A} \right) \geqslant \frac{1}{2}bc\left( {1 + \cos A} \right) = bc{\cos ^2}\frac{A}{2}$

$\begin{array}
  \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \Rightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}  \\
   \Rightarrow {\cos ^2}A = \frac{{{b^2} + {c^2} - {a^2} + 2bc}}{{4bc}} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{4bc}} = \frac{{p\left( {p - a} \right)}}{{bc}}  \\
   \Rightarrow {m_a} \geqslant \sqrt {p\left( {p - a} \right)}   \\
\end{array} $
Tương tự ta có:
$\begin{array}
  \left\{ \begin{array}
  {m_b} \geqslant \sqrt {p\left( {p - b} \right)}   \\
  {m_c} \geqslant \sqrt {p\left( {p - c} \right)}   \\
\end{array}  \right.  \\
   \Rightarrow {m_a}{m_b}{m_c} \geqslant p\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = pS  \\
\end{array} $
$ \Rightarrow $ Đpcm.

b) Tam giác cân:
Đối với dạng bài nhận dạng tam giác cân, ta cần phải chỉ ra điều kiện xảy ra dấu bằng của bất đẳng thức là khi 2 biến bằng nhau và khác biến thứ ba. Ta xét các ví dụ sau:

Ví dụ 1:
CMR $\Delta ABC$cân khi nó thỏa điều kiện ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2}$ và nhọn.
Lời giải:
Ta có: $\tan A + \tan B = \frac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \frac{{2\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right) + \cos \left( {A - B} \right)}} = \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}}$
Vì $\cos \left( {A - B} \right) \leqslant 1 \Rightarrow \cos \left( {A - B} \right) - \cos C \leqslant 1 - \cos C = 2{\sin ^2}\frac{C}{2}$
$\begin{array}
   \Rightarrow \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}} \geqslant \frac{{2\sin C}}{{2{{\sin }^2}\frac{C}{2}}} = \frac{{4\sin \frac{C}{2}\cos \frac{C}{2}}}{{2{{\sin }^2}\frac{C}{2}}} = 2\cot \frac{C}{2} = 2\tan \frac{{A + B}}{2}  \\
   \Rightarrow \tan A + \tan B \geqslant 2\tan \frac{{A + B}}{2}  \\
\end{array} $
Từ giả thiết: ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2} \leqslant 2{\left( {\frac{{\tan A + \tan B}}{2}} \right)^2}$
$\begin{array}
   \Leftrightarrow 2\left( {{{\tan }^2}A + {{\tan }^2}B} \right) \leqslant {\tan ^2}A + {\tan ^2}B + 2\tan A\tan B  \\
   \Leftrightarrow {\left( {\tan A - \tan B} \right)^2} \leqslant 0  \\
   \Leftrightarrow A = B  \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 2:
CMR $\Delta ABC$cân khi thỏa ${h_a} = \sqrt {bc} \cos \frac{A}{2}$
Lời giải:
Trong mọi tam giác ta luôn có: ${h_a} \leqslant {l_a} = \frac{{2bc}}{{b + c}}\cos \frac{A}{2}$
Mà $b + c \geqslant 2\sqrt {bc}  \Rightarrow \frac{{2bc}}{{b + c}} \leqslant \frac{{bc}}{{\sqrt {bc} }} = \sqrt {bc} $
$ \Rightarrow \frac{{2bc}}{{b + c}}\cos \frac{A}{2} \leqslant \sqrt {bc} \cos \frac{A}{2} \Rightarrow {h_a} \leqslant \sqrt {bc} \cos \frac{A}{2}$
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 3:
CMR nếu thỏa $r + {r_a} = 4R\sin \frac{B}{2}$ thì $\Delta ABC$cân.
Lời giải:
Ta có:
$\begin{array}
  r + {r_a} = \left( {p - b} \right)\tan \frac{b}{2} + p\tan \frac{B}{2} = \left( {2p - b} \right)\tan \frac{B}{2} = \left( {a + c} \right)\tan \frac{B}{2} = 2R\left( {\sin A + \sin C} \right)\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}}  \\
   = 4R\sin \frac{{A + C}}{2}\cos \frac{{A + C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\cos \frac{B}{2}\cos \frac{{A - C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\sin \frac{B}{2}\cos \frac{{A - C}}{2} \leqslant 4R\sin \frac{B}{2}  \\
   \Rightarrow r + {r_a} \leqslant 4R\sin \frac{B}{2}  \\
\end{array} $
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu $S = \frac{1}{4}\left( {{a^2} + {b^2}} \right)$ thì $\Delta ABC$cân.
Lời giải:
Ta có: ${a^2} + {b^2} \geqslant 2ab \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant \frac{1}{2}ab \geqslant \frac{1}{2}ab\sin C = S$
$ \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant S \Rightarrow $$\Delta ABC$cân nếu thỏa đk đề bài.

Ví dụ 5:
CMR $\Delta ABC$cân khi thỏa $2\cos A + \cos B + \cos C = \frac{9}{4}$
Lời giải:
Ta có:
$2\cos A + \cos B + \cos C = 2\left( {1 - 2{{\sin }^2}\frac{A}{2}} \right) + 2\cos \frac{{B + C}}{2}\cos \frac{{B - C}}{2}$
  $\begin{array}
   =  - 4{\sin ^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4} =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} + \frac{1}{4}{\cos ^2}\frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4}  \\
   =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} - \frac{1}{4}{\sin ^2}\frac{{B - C}}{2} + \frac{9}{4} \leqslant \frac{9}{4}  \\
\end{array} $
Đẳng thức xảy ra khi B=C $ \Rightarrow $ Đpcm.

c) Tam giác vuông:
Đối với dạng bài tập nhận dạng tam giác vuông, ta ít khi cần dùng đến các BĐT lượng giác mà thường là chỉ cần sử dụng các phương pháp biến đổi tương đương là được.    

Ví dụ 1:
Cho tam giác ABC có các góc thỏa mãn hệ thức $3\left( {\cos B + 2\sin C} \right) + 4\left( {\sin B + 2\cos C} \right) = 15$
Chứng minh $\vartriangle $ABC vuông.
Lời giải:
Theo Bunhiacốpxki ta có:
$\left\{ \begin{array}
  3\cos B + 4\sin B \leqslant \sqrt {\left( {{3^2} + {4^2}} \right)\left( {{{\cos }^2}B + {{\sin }^2}B} \right)}  = 5  \\
  6\sin C + 8\cos C \leqslant \sqrt {\left( {{6^2} + {8^2}} \right)\left( {{{\sin }^2}C + {{\cos }^2}C} \right)}  = 10  \\
\end{array}  \right.$
$ \Rightarrow 3\cos B + 4\sin B + 6\sin C + 8\cos C \leqslant 15$
Đẳng thức xảy ra khi và chỉ khi:
$\left\{ \begin{array}
  3\cos B + 4\sin B = 5  \\
  6\sin C + 8\cos C = 10  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \frac{{\cos B}}{3} = \frac{{\sin B}}{4}  \\
  \frac{{\sin C}}{6} = \frac{{\cos C}}{8}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \tan B = \frac{4}{3}  \\
  \cot C = \frac{4}{3}  \\
\end{array}  \right. \Leftrightarrow \tan B = \cot C \Leftrightarrow B + C = \frac{\pi }{2}$
Vậy tam giác ABC vuông tại A.

2. Cực trị lượng giác:
Đây là một lĩnh vực khó, đòi hỏi người giải cần phải tự mình sử dụng khéo léo các bất đẳng thức lượng giác phù hợp cũng như phải có một vốn kiến thức khá lớn về bất đẳng thức để có thể tìm ra đáp án của bài toán.

Ví dụ 1:
Tìm giá trị nhỏ nhất của hàm số:
$f(x,y) = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Với a,b,c,d là các hằng số dương.
Lời giải:
Đặt $f(x,y) = a{f_1} + b{f_2}$ với ${f_1} = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}}$ và ${f_2} = \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Ta có:  $c + d = c\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + d\left( {{{\sin }^2}y + {{\cos }^2}y} \right)$                             
Do đó: $\left( {c + d} \right){f_1} = \left[ {\left( {c{{\sin }^2}x + d{{\cos }^2}y} \right) + \left( {c{{\cos }^2}x + d{{\sin }^2}y} \right)} \right]\left[ {\frac{{{{\sin }^4}x}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{{{\cos }^4}x}}{{c{{\cos }^2}x + d{{\sin }^2}y}}} \right]$
$ \geqslant {\left( {\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} \frac{{{{\sin }^2}x}}{{\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} }} + \sqrt {c{{\cos }^2}x + d{{\sin }^2}y} \frac{{{{\cos }^2}x}}{{\sqrt {c{{\cos }^2}x + d{{\sin }^2}y} }}} \right)^2} = 1$
$ \Rightarrow {f_1} \geqslant \frac{1}{{c + d}}$. Tương tự $ \Rightarrow {f_2} \geqslant \frac{1}{{c + d}}$. Vậy $f(x,y) = a{f_1} + b{f_2} \geqslant \frac{{a + b}}{{c + d}}$

Ví dụ 2:
Tìm giá trị nhỏ nhất của biểu thức: $P = \cos 3A + \cos 3B - \cos 3C$
Lời giải:
Ta có: $\cos 3C = \cos 3\left[ {\pi  - \left( {A + B} \right)} \right] = \cos \left[ {3\pi  - 3\left( {A - B} \right)} \right] =  - \cos 3\left( {A + B} \right)$ nên
$\begin{array}
  P = \cos 3A + \cos 3B + \cos 3\left( {A + B} \right) = 2\cos 3\left( {\frac{{A + B}}{2}} \right)\cos 3\left( {\frac{{A - B}}{2}} \right) + 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) - 1  \\
   \Rightarrow P + \frac{3}{2} = 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) + 2\cos \left( {\frac{{A - B}}{2}} \right)\cos 3\left( {\frac{{A + B}}{2}} \right) + \frac{1}{2} = f(x,y)  \\
\end{array} $
$\Delta \prime  = {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) - 1 \leqslant 0 \Rightarrow P \geqslant  - \frac{3}{2}$
$\begin{array}
  P =  - \frac{3}{2} \Leftrightarrow \left\{ \begin{array}
  \Delta \prime  = 0  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) = 1  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \cos 3A =  - \frac{1}{2}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \left[ \begin{array}
  A = \frac{{2\pi }}{9}  \\
  A = \frac{{4\pi }}{9}  \\
\end{array}  \right.  \\
\end{array}  \right.  \\
\end{array} $
Vậy ${P_{\min }} =  -  - \frac{3}{2} \Leftrightarrow \left[ \begin{array}
  A = B = \frac{{2\pi }}{9},C = \frac{{5\pi }}{9}  \\
  A = B = \frac{{4\pi }}{9},C = \frac{\pi }{9}  \\
\end{array}  \right.$

Ví dụ 3:
Tìm giá trị lớn nhất của biểu thức: $P = \frac{{{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C}}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}}$
Lời giải:
Ta có:
$P = \frac{3}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}} - 1$
$\begin{array}
   = \frac{3}{{3 - \left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)}} - 1  \\
   \leqslant \frac{3}{{3 - \frac{9}{4}}} - 1 = 3  \\
\end{array} $
Do đó ${P_{\max }} = 3 \Leftrightarrow \Delta ABC$đều.

Ví dụ 4:
Tìm giá trị lớn nhất, nhỏ nhất của $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x} $
Lời giải:
Điều kiện: $\sin x \geqslant 0,\cos x \geqslant 0$
Ta có: $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \leqslant \sqrt[4]{{\sin x}} \leqslant 1$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}
  \sin x = 1  \\
  \cos x = 0  \\
\end{array}  \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi $
Mặt khác $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \geqslant  - \cos x \geqslant  - 1$
Dấu bằng xảy ra $\left\{ \begin{array}
  \sin x = 0  \\
  \cos x = 1  \\
\end{array}  \right. \Leftrightarrow x = 2k\pi $
Vậy $\left\{ \begin{array}
  {y_{\max }} = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi   \\
  {y_{\min }} =  - 1 \Leftrightarrow x = 2k\pi   \\
\end{array}  \right.$

Ví dụ 5:
Cho hàm số $y = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$. Hãy tìm Max $y$trên miền xác định của nó.
Lời giải:
Vì $\sin x$và $\cos x$ không đồng thời bằng 1 nên $y$ xác định trên R.
${Y_0}$ thuộc miền giá trị của hàm số khi và chỉ khi ${Y_0} = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$ có nghiệm.
$ \Leftrightarrow {Y_0}\sin x + \left( {{Y_0} - 1} \right)\cos x = 2{Y_0} + 2$ có nghiệm.
$\begin{array}
  {\left( {2{Y_0} + 2} \right)^2} \leqslant {Y_0}^2 + {\left( {{Y_0} - 1} \right)^2}  \\
   \Leftrightarrow 2{Y_0}^2 + 10{Y_0} + 3 \leqslant 0  \\
   \Leftrightarrow \frac{{ - 5 - \sqrt {19} }}{2} \leqslant {Y_0} \leqslant \frac{{ - 5 + \sqrt {19} }}{2}  \\
\end{array} $
Vậy ${y_{\max }} = \frac{{ - 5 + \sqrt {19} }}{2}$

Bài tập rèn luyện
CMR $\Delta ABC$đều khi nó thỏa mãn một trong các đẳng thức sau:
1)    $\cos A\cos B + \cos B\cos C + \cos C\cos A = \frac{3}{4}$
2)    $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$
3)    $\frac{1}{{\sin 2A}} + \frac{1}{{\sin 2B}} + \frac{1}{{\sin 2C}} = \frac{{\sqrt 3 }}{2} + \frac{1}{2}\tan A\tan B\tan C$
4)    ${\left( {\frac{{{a^2} + {b^2} + {c^2}}}{{\cot A + \cot B + \cot C}}} \right)^2} = \frac{{{a^2}{b^2}{c^2}}}{{\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}}}$
5)    $\frac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \frac{1}{2}$
6)    ${l_a}{l_b}{l_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
7)    ${m_a}{m_b}{m_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
8)    $bc\cot \frac{A}{2} + ca\cot \frac{B}{2} + ab\cot \frac{C}{2} = 12S$
9)    $\left( {1 + \frac{1}{{\sin A}}} \right)\left( {1 + \frac{1}{{\sin B}}} \right)\left( {1 + \frac{1}{{\sin C}}} \right) = 5 + \frac{{26\sqrt 3 }}{9}$

Chat chit và chém gió
  • TN: hưng 2/28/2017 6:13:27 AM
  • noivoi_visaothe: uk 2/28/2017 6:13:27 AM
  • nevermy01: hương à 2/28/2017 6:13:30 AM
  • nevermy01: lâu k gặp big_grin 2/28/2017 6:13:33 AM
  • noivoi_visaothe: uk 2/28/2017 6:13:34 AM
  • Thiên Hạ Vô Song: hương à 2/28/2017 6:13:39 AM
  • noivoi_visaothe: k nhớ ai hết đâu 2/28/2017 6:13:40 AM
  • Thiên Hạ Vô Song: lớp cạnh cũng có người tên hương 2/28/2017 6:13:44 AM
  • TN: thua 2/28/2017 6:13:52 AM
  • noivoi_visaothe: có pn nào giỏi hàm liên tục k 2/28/2017 6:13:56 AM
  • Bon Bon: ko 2/28/2017 6:14:02 AM
  • noivoi_visaothe: h có bài bí quá k bt làm 2/28/2017 6:14:04 AM
  • phucpy2k: chịu 2/28/2017 6:14:07 AM
  • Bon Bon: chia khoảng ntn 2/28/2017 6:14:09 AM
  • noivoi_visaothe: f(o),f(m^2),f(a),f(b) 2/28/2017 6:14:29 AM
  • hanghapy2015: hello các cậu nhé happy 2/28/2017 6:14:32 AM
  • Thiên Hạ Vô Song: mình trên thông thiên văn dưới tường địa lý 2/28/2017 6:14:45 AM
  • Bon Bon: straight_face 2/28/2017 6:14:47 AM
  • phucpy2k: chào hanghapy2015 2/28/2017 6:14:50 AM
  • Thiên Hạ Vô Song: nên ko rành hàm liên tục nhé 2/28/2017 6:14:52 AM
  • Ryo: sad 2/28/2017 6:14:53 AM
  • noivoi_visaothe: f(a),f(b) thfi phải biện luân đến âm vô cùng và dương vô cùng bn nhé 2/28/2017 6:14:59 AM
  • phucpy2k: bạn tên gì thế ? 2/28/2017 6:15:03 AM
  • Ryo: hương quỳnh 2/28/2017 6:15:14 AM
  • phucpy2k:2/28/2017 6:15:24 AM
  • noivoi_visaothe: uk sao a? 2/28/2017 6:15:26 AM
  • phucpy2k: mem cũ hả 2/28/2017 6:15:33 AM
  • Ryo: lâu k thấy e 2/28/2017 6:15:40 AM
  • phucpy2k: thấy 2015 2/28/2017 6:15:44 AM
  • noivoi_visaothe: uk 2/28/2017 6:15:46 AM
  • noivoi_visaothe: tại lịch hok dày quá 2/28/2017 6:16:00 AM
  • noivoi_visaothe: ai lớp 11 k 2/28/2017 6:16:05 AM
  • noivoi_visaothe: giảng dùm vs 2/28/2017 6:16:08 AM
  • noivoi_visaothe: sao hn mn on ít v 2/28/2017 6:16:13 AM
  • Tiểu Hi: mk lp 11 2/28/2017 6:16:16 AM
  • phucpy2k: 11 nè 2/28/2017 6:16:21 AM
  • noivoi_visaothe: uk 2/28/2017 6:16:22 AM
  • noivoi_visaothe: giúp dùm bài liên tục vs 2/28/2017 6:16:30 AM
  • phucpy2k: bạn sn bn nhỉ ? 2/28/2017 6:16:42 AM
  • dohuynhduc91: ai có đề violimpic lớp 10 vòng tỉnh hem 2/28/2017 6:16:45 AM
  • Thiên Hạ Vô Song: chào hằng 2/28/2017 6:16:48 AM
  • noivoi_visaothe: 2k 2/28/2017 6:16:49 AM
  • Ryo: đưa bài đây cho a 2/28/2017 6:16:52 AM
  • Ryo: a để trưng hả e 2/28/2017 6:16:57 AM
  • noivoi_visaothe: ô may quá 2/28/2017 6:17:06 AM
  • phucpy2k: bạn hanghapy2015 ý 2/28/2017 6:17:08 AM
  • hanghapy2015: chào cậu winking 2/28/2017 6:17:13 AM
  • noivoi_visaothe: qua face e chụp gửi ảnh đề cho nhá 2/28/2017 6:17:23 AM
  • phucpy2k: bạn mấy k nhỉ ? 2/28/2017 6:17:29 AM
  • Tiểu Hi: ok 2/28/2017 6:17:29 AM
  • Ryo: lúc nào cũng bên f 2/28/2017 6:17:34 AM
  • Tiểu Hi: gửi đề mk xem vs 2/28/2017 6:17:38 AM
  • dohuynhduc91: fb tên j 2/28/2017 6:17:57 AM
  • noivoi_visaothe: ok 2/28/2017 6:18:04 AM
  • noivoi_visaothe: fb của bạn 2/28/2017 6:18:10 AM
  • Tiểu Hi: Thảo Chi 2/28/2017 6:18:16 AM
  • noivoi_visaothe: tên đẹp v 2/28/2017 6:18:24 AM
  • Tiểu Hi: tên bthg 2/28/2017 6:18:32 AM
  • Tiểu Hi: tên thật đó 2/28/2017 6:18:38 AM
  • dohuynhduc91: huỳnh đức 2/28/2017 6:18:42 AM
  • Ryo: =.= 2/28/2017 6:18:53 AM
  • Ryo: chs game típ v 2/28/2017 6:18:56 AM
  • Ryo: fb bk bao nhiêu ng tên thảo chi 2/28/2017 6:19:31 AM
  • noivoi_visaothe: ông a -_- 2/28/2017 6:19:45 AM
  • noivoi_visaothe: xử đi 2/28/2017 6:19:47 AM
  • Tiểu Hi: https://www.facebook.com/thaochibe 2/28/2017 6:19:52 AM
  • Ryo: sao e 2/28/2017 6:19:56 AM
  • Ryo: tìm thấy lâu r 2/28/2017 6:20:03 AM
  • Ryo: happy 2/28/2017 6:20:05 AM
  • Tiểu Hi: happy 2/28/2017 6:20:16 AM
  • Tiểu Hi: mk cũng k giỏi phần hs liên tục lắm 2/28/2017 6:20:28 AM
  • Tiểu Hi: thử làm cho biết thôi 2/28/2017 6:20:34 AM
  • @_@ *Mèo* @_@: straight_face 2/28/2017 6:21:08 AM
  • Thiên Hạ Vô Song: thì cứ thử htôi, nhiều cái đầu thì dễ ra hơn mừ 2/28/2017 6:21:27 AM
  • Ryo: =.= 2/28/2017 6:21:34 AM
  • noivoi_visaothe: chấp nhận đi bn 2/28/2017 6:21:48 AM
  • noivoi_visaothe: mk gửi đề cho 2/28/2017 6:21:53 AM
  • @_@ *Mèo* @_@: cái gì v straight_face 2/28/2017 6:22:24 AM
  • Ryo: yawn 2/28/2017 6:22:24 AM
  • Tiểu Hi: chấp nhận r 2/28/2017 6:22:25 AM
  • noivoi_visaothe: ok 2/28/2017 6:23:05 AM
  • noivoi_visaothe: bon bon ra chưa bài đó chưa v 2/28/2017 6:23:18 AM
  • Bon Bon: chua 2/28/2017 6:23:26 AM
  • Ryo: bài đó e thử tam thức chưa 2/28/2017 6:23:58 AM
  • noivoi_visaothe: v để mk làm r chụp cho 2/28/2017 6:23:59 AM
  • noivoi_visaothe: nick f của bn có k 2/28/2017 6:24:05 AM
  • Bon Bon: fb hả 2/28/2017 6:24:12 AM
  • Bon Bon: mk ms khóa 2/28/2017 6:24:16 AM
  • TN: hương à 2/28/2017 6:24:34 AM
  • noivoi_visaothe: uk 2/28/2017 6:24:38 AM
  • noivoi_visaothe: cái này khó 2/28/2017 6:24:42 AM
  • TN: chụp gửi cho mk 2/28/2017 6:24:45 AM
  • noivoi_visaothe: tại mk k bt đánh trên này 2/28/2017 6:24:49 AM
  • noivoi_visaothe: hở 2/28/2017 6:24:53 AM
  • Bon Bon: ko sao 2/28/2017 6:24:55 AM
  • noivoi_visaothe: bn là ai v 2/28/2017 6:24:58 AM
  • Bon Bon: gửi cho B đi 2/28/2017 6:25:02 AM
  • noivoi_visaothe: TN ? 2/28/2017 6:25:05 AM
  • Bon Bon: bắc 2/28/2017 6:25:12 AM
  • TN: https://www.facebook.com/profile.php?id=100014735388148 2/28/2017 6:25:16 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Đức Vỹ
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Táo Dễ thương
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • nevermy01
  • phanthilanphuong2011
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • ¸.•♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•.¸
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Tôi Tên "NHÁI"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Quỳnh Vũ
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • ๖ۣۜQueenღ
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • HMU-HY-18
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • ۞♠ξ__Judal__ζ♣۞
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • TNNNDK
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜNanhBạc๖ۣ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • ProGK
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • ๖ۣۜSadღ
  • phng_pepsi
  • Young Wild and Free
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • johnnn509
  • •♥•
  • Nguyễn Đức Minh
  • Ryo
  • TN
  • cụ nhỏ
  • Update
  • w
  • Mãi là vk đáng ju của ck
  • egaehaneya
  • Trangg"xxx Kiềuu"xxx
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Karry Angel ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • ntva
  • toilamothuyenthoai
  • DoTri69
  • Bon Bon
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • BB
  • Forget
  • thanhnga759
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • TrọngVũ
  • thanhhuongthcsmpbd
  • ChoaN
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • math
  • tarrasqueaohk
  • Caohuongjc
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • jhhanhhanh
  • dohuynhduc91