ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN


Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác

1. Định tính tam giác:
a) Tam giác đều:

Đối với loại bài nhận dạng tam giác đều, ta chỉ cần giải bất đẳng thức lượng giác và chỉ ra điều kiện xảy ra dấu bằng của BĐT đó. Ta sẽ xét các ví dụ sau để thấy rõ điều đó.

Ví dụ 1:
CMR $\Delta ABC$đều khi thỏa: ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Lời giải:
Theo Bunhiacốpxki ta có:
${\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 3\left( {{m_a}^2 + {m_b}^2 + {m_c}^2} \right)$
$\begin{array}
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant \frac{9}{4}\left( {{a^2} + {b^2} + {c^2}} \right)  \\
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}\left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)  \\
\end{array} $
mà   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
$ \Rightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}.\frac{9}{4} = \frac{{81}}{4}{R^2}$
$ \Rightarrow $ ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều $ \Rightarrow $Đpcm.

Ví dụ 2:    
CMR nếu $\sin \frac{A}{2}\sin \frac{B}{2} = \frac{{\sqrt {ab} }}{{4c}}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\frac{{\sqrt {ab} }}{{4c}} \leqslant \frac{{a + b}}{{8c}} = \frac{{2R\left( {\sin A + \sin B} \right)}}{{2R.8\sin C}} = \frac{{2R.2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2}}}{{2R.8.2\sin \frac{C}{2}\cos \frac{C}{2}}} = \frac{{\cos \frac{{A - B}}{2}}}{{8\sin \frac{C}{2}}} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}$
$\begin{array}
   \Rightarrow \sin \frac{A}{2}\sin \frac{B}{2} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}  \\
   \Leftrightarrow 8\cos \frac{{A + B}}{2}\sin \frac{A}{2}\sin \frac{B}{2} \leqslant 1  \\
   \Leftrightarrow 4\cos \frac{{A + B}}{2}\left( {\cos \frac{{A - B}}{2} - \cos \frac{{A + B}}{2}} \right) - 1 \leqslant 0  \\
\end{array} $
$\begin{array}
   \Leftrightarrow 4{\cos ^2}\frac{{A + B}}{2} - 4\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 1 \geqslant 0  \\
   \Leftrightarrow {\left( {2\cos \frac{{A + B}}{2} - \cos \frac{{A - B}}{2}} \right)^2} + {\sin ^2}\frac{{A - B}}{2} \geqslant 0  \\
    \\
\end{array} $
$ \Rightarrow $ Đpcm.
    
Ví dụ 3:
CMR $\Delta ABC$đều khi nó thỏa: $2\left( {{h_a} + {h_b} + {h_c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
Lời giải:
Theo đề bài ta có:
$2.2p\left( {\frac{r}{a} + \frac{r}{b} + \frac{r}{c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
$\begin{array}
   \Leftrightarrow \frac{r}{a} + \frac{r}{b} + \frac{r}{c} = \frac{{\sqrt 3 }}{2}  \\
   \Leftrightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{{\sqrt 3 }}{2}  \\
\end{array} $
Ta lại có:  $\frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} \leqslant \frac{1}{4}\left( {\frac{1}{{\cot \frac{A}{2}}} + \frac{1}{{\cot \frac{B}{2}}}} \right) = \frac{1}{4}\left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)$
Tương tự ta có:
$\frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} = \frac{1}{4}\left( {\tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
$\frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{1}{4}\left( {\tan \frac{C}{2} + \tan \frac{A}{2}} \right)$
$\begin{array}
   \Rightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right)  \\
   \Rightarrow \frac{{\sqrt 3 }}{2} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right) \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu thỏa $S = 3Rr\frac{{\sqrt 3 }}{2}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\begin{array}
  S = 2{R^2}\sin A\sin B\sin C = 2.{R^2}.2.2.2.\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
   = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}.4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = r4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
\end{array} $
$ \leqslant r4R\frac{{3\sqrt 3 }}{8} = \frac{{3\sqrt 3 }}{2}Rr$
$ \Rightarrow $ Đpcm.

Ví dụ 5:
CMR $\Delta ABC$đều khi nó thỏa ${m_a}{m_b}{m_c} = pS$
Lời giải:
Ta có:  ${m_a}^2 = \frac{1}{4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) = \frac{1}{4}\left( {{b^2} + {c^2} - 2bc\cos A} \right) \geqslant \frac{1}{2}bc\left( {1 + \cos A} \right) = bc{\cos ^2}\frac{A}{2}$

$\begin{array}
  \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \Rightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}  \\
   \Rightarrow {\cos ^2}A = \frac{{{b^2} + {c^2} - {a^2} + 2bc}}{{4bc}} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{4bc}} = \frac{{p\left( {p - a} \right)}}{{bc}}  \\
   \Rightarrow {m_a} \geqslant \sqrt {p\left( {p - a} \right)}   \\
\end{array} $
Tương tự ta có:
$\begin{array}
  \left\{ \begin{array}
  {m_b} \geqslant \sqrt {p\left( {p - b} \right)}   \\
  {m_c} \geqslant \sqrt {p\left( {p - c} \right)}   \\
\end{array}  \right.  \\
   \Rightarrow {m_a}{m_b}{m_c} \geqslant p\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = pS  \\
\end{array} $
$ \Rightarrow $ Đpcm.

b) Tam giác cân:
Đối với dạng bài nhận dạng tam giác cân, ta cần phải chỉ ra điều kiện xảy ra dấu bằng của bất đẳng thức là khi 2 biến bằng nhau và khác biến thứ ba. Ta xét các ví dụ sau:

Ví dụ 1:
CMR $\Delta ABC$cân khi nó thỏa điều kiện ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2}$ và nhọn.
Lời giải:
Ta có: $\tan A + \tan B = \frac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \frac{{2\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right) + \cos \left( {A - B} \right)}} = \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}}$
Vì $\cos \left( {A - B} \right) \leqslant 1 \Rightarrow \cos \left( {A - B} \right) - \cos C \leqslant 1 - \cos C = 2{\sin ^2}\frac{C}{2}$
$\begin{array}
   \Rightarrow \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}} \geqslant \frac{{2\sin C}}{{2{{\sin }^2}\frac{C}{2}}} = \frac{{4\sin \frac{C}{2}\cos \frac{C}{2}}}{{2{{\sin }^2}\frac{C}{2}}} = 2\cot \frac{C}{2} = 2\tan \frac{{A + B}}{2}  \\
   \Rightarrow \tan A + \tan B \geqslant 2\tan \frac{{A + B}}{2}  \\
\end{array} $
Từ giả thiết: ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2} \leqslant 2{\left( {\frac{{\tan A + \tan B}}{2}} \right)^2}$
$\begin{array}
   \Leftrightarrow 2\left( {{{\tan }^2}A + {{\tan }^2}B} \right) \leqslant {\tan ^2}A + {\tan ^2}B + 2\tan A\tan B  \\
   \Leftrightarrow {\left( {\tan A - \tan B} \right)^2} \leqslant 0  \\
   \Leftrightarrow A = B  \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 2:
CMR $\Delta ABC$cân khi thỏa ${h_a} = \sqrt {bc} \cos \frac{A}{2}$
Lời giải:
Trong mọi tam giác ta luôn có: ${h_a} \leqslant {l_a} = \frac{{2bc}}{{b + c}}\cos \frac{A}{2}$
Mà $b + c \geqslant 2\sqrt {bc}  \Rightarrow \frac{{2bc}}{{b + c}} \leqslant \frac{{bc}}{{\sqrt {bc} }} = \sqrt {bc} $
$ \Rightarrow \frac{{2bc}}{{b + c}}\cos \frac{A}{2} \leqslant \sqrt {bc} \cos \frac{A}{2} \Rightarrow {h_a} \leqslant \sqrt {bc} \cos \frac{A}{2}$
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 3:
CMR nếu thỏa $r + {r_a} = 4R\sin \frac{B}{2}$ thì $\Delta ABC$cân.
Lời giải:
Ta có:
$\begin{array}
  r + {r_a} = \left( {p - b} \right)\tan \frac{b}{2} + p\tan \frac{B}{2} = \left( {2p - b} \right)\tan \frac{B}{2} = \left( {a + c} \right)\tan \frac{B}{2} = 2R\left( {\sin A + \sin C} \right)\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}}  \\
   = 4R\sin \frac{{A + C}}{2}\cos \frac{{A + C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\cos \frac{B}{2}\cos \frac{{A - C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\sin \frac{B}{2}\cos \frac{{A - C}}{2} \leqslant 4R\sin \frac{B}{2}  \\
   \Rightarrow r + {r_a} \leqslant 4R\sin \frac{B}{2}  \\
\end{array} $
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu $S = \frac{1}{4}\left( {{a^2} + {b^2}} \right)$ thì $\Delta ABC$cân.
Lời giải:
Ta có: ${a^2} + {b^2} \geqslant 2ab \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant \frac{1}{2}ab \geqslant \frac{1}{2}ab\sin C = S$
$ \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant S \Rightarrow $$\Delta ABC$cân nếu thỏa đk đề bài.

Ví dụ 5:
CMR $\Delta ABC$cân khi thỏa $2\cos A + \cos B + \cos C = \frac{9}{4}$
Lời giải:
Ta có:
$2\cos A + \cos B + \cos C = 2\left( {1 - 2{{\sin }^2}\frac{A}{2}} \right) + 2\cos \frac{{B + C}}{2}\cos \frac{{B - C}}{2}$
  $\begin{array}
   =  - 4{\sin ^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4} =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} + \frac{1}{4}{\cos ^2}\frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4}  \\
   =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} - \frac{1}{4}{\sin ^2}\frac{{B - C}}{2} + \frac{9}{4} \leqslant \frac{9}{4}  \\
\end{array} $
Đẳng thức xảy ra khi B=C $ \Rightarrow $ Đpcm.

c) Tam giác vuông:
Đối với dạng bài tập nhận dạng tam giác vuông, ta ít khi cần dùng đến các BĐT lượng giác mà thường là chỉ cần sử dụng các phương pháp biến đổi tương đương là được.    

Ví dụ 1:
Cho tam giác ABC có các góc thỏa mãn hệ thức $3\left( {\cos B + 2\sin C} \right) + 4\left( {\sin B + 2\cos C} \right) = 15$
Chứng minh $\vartriangle $ABC vuông.
Lời giải:
Theo Bunhiacốpxki ta có:
$\left\{ \begin{array}
  3\cos B + 4\sin B \leqslant \sqrt {\left( {{3^2} + {4^2}} \right)\left( {{{\cos }^2}B + {{\sin }^2}B} \right)}  = 5  \\
  6\sin C + 8\cos C \leqslant \sqrt {\left( {{6^2} + {8^2}} \right)\left( {{{\sin }^2}C + {{\cos }^2}C} \right)}  = 10  \\
\end{array}  \right.$
$ \Rightarrow 3\cos B + 4\sin B + 6\sin C + 8\cos C \leqslant 15$
Đẳng thức xảy ra khi và chỉ khi:
$\left\{ \begin{array}
  3\cos B + 4\sin B = 5  \\
  6\sin C + 8\cos C = 10  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \frac{{\cos B}}{3} = \frac{{\sin B}}{4}  \\
  \frac{{\sin C}}{6} = \frac{{\cos C}}{8}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \tan B = \frac{4}{3}  \\
  \cot C = \frac{4}{3}  \\
\end{array}  \right. \Leftrightarrow \tan B = \cot C \Leftrightarrow B + C = \frac{\pi }{2}$
Vậy tam giác ABC vuông tại A.

2. Cực trị lượng giác:
Đây là một lĩnh vực khó, đòi hỏi người giải cần phải tự mình sử dụng khéo léo các bất đẳng thức lượng giác phù hợp cũng như phải có một vốn kiến thức khá lớn về bất đẳng thức để có thể tìm ra đáp án của bài toán.

Ví dụ 1:
Tìm giá trị nhỏ nhất của hàm số:
$f(x,y) = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Với a,b,c,d là các hằng số dương.
Lời giải:
Đặt $f(x,y) = a{f_1} + b{f_2}$ với ${f_1} = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}}$ và ${f_2} = \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Ta có:  $c + d = c\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + d\left( {{{\sin }^2}y + {{\cos }^2}y} \right)$                             
Do đó: $\left( {c + d} \right){f_1} = \left[ {\left( {c{{\sin }^2}x + d{{\cos }^2}y} \right) + \left( {c{{\cos }^2}x + d{{\sin }^2}y} \right)} \right]\left[ {\frac{{{{\sin }^4}x}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{{{\cos }^4}x}}{{c{{\cos }^2}x + d{{\sin }^2}y}}} \right]$
$ \geqslant {\left( {\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} \frac{{{{\sin }^2}x}}{{\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} }} + \sqrt {c{{\cos }^2}x + d{{\sin }^2}y} \frac{{{{\cos }^2}x}}{{\sqrt {c{{\cos }^2}x + d{{\sin }^2}y} }}} \right)^2} = 1$
$ \Rightarrow {f_1} \geqslant \frac{1}{{c + d}}$. Tương tự $ \Rightarrow {f_2} \geqslant \frac{1}{{c + d}}$. Vậy $f(x,y) = a{f_1} + b{f_2} \geqslant \frac{{a + b}}{{c + d}}$

Ví dụ 2:
Tìm giá trị nhỏ nhất của biểu thức: $P = \cos 3A + \cos 3B - \cos 3C$
Lời giải:
Ta có: $\cos 3C = \cos 3\left[ {\pi  - \left( {A + B} \right)} \right] = \cos \left[ {3\pi  - 3\left( {A - B} \right)} \right] =  - \cos 3\left( {A + B} \right)$ nên
$\begin{array}
  P = \cos 3A + \cos 3B + \cos 3\left( {A + B} \right) = 2\cos 3\left( {\frac{{A + B}}{2}} \right)\cos 3\left( {\frac{{A - B}}{2}} \right) + 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) - 1  \\
   \Rightarrow P + \frac{3}{2} = 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) + 2\cos \left( {\frac{{A - B}}{2}} \right)\cos 3\left( {\frac{{A + B}}{2}} \right) + \frac{1}{2} = f(x,y)  \\
\end{array} $
$\Delta \prime  = {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) - 1 \leqslant 0 \Rightarrow P \geqslant  - \frac{3}{2}$
$\begin{array}
  P =  - \frac{3}{2} \Leftrightarrow \left\{ \begin{array}
  \Delta \prime  = 0  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) = 1  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \cos 3A =  - \frac{1}{2}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \left[ \begin{array}
  A = \frac{{2\pi }}{9}  \\
  A = \frac{{4\pi }}{9}  \\
\end{array}  \right.  \\
\end{array}  \right.  \\
\end{array} $
Vậy ${P_{\min }} =  -  - \frac{3}{2} \Leftrightarrow \left[ \begin{array}
  A = B = \frac{{2\pi }}{9},C = \frac{{5\pi }}{9}  \\
  A = B = \frac{{4\pi }}{9},C = \frac{\pi }{9}  \\
\end{array}  \right.$

Ví dụ 3:
Tìm giá trị lớn nhất của biểu thức: $P = \frac{{{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C}}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}}$
Lời giải:
Ta có:
$P = \frac{3}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}} - 1$
$\begin{array}
   = \frac{3}{{3 - \left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)}} - 1  \\
   \leqslant \frac{3}{{3 - \frac{9}{4}}} - 1 = 3  \\
\end{array} $
Do đó ${P_{\max }} = 3 \Leftrightarrow \Delta ABC$đều.

Ví dụ 4:
Tìm giá trị lớn nhất, nhỏ nhất của $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x} $
Lời giải:
Điều kiện: $\sin x \geqslant 0,\cos x \geqslant 0$
Ta có: $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \leqslant \sqrt[4]{{\sin x}} \leqslant 1$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}
  \sin x = 1  \\
  \cos x = 0  \\
\end{array}  \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi $
Mặt khác $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \geqslant  - \cos x \geqslant  - 1$
Dấu bằng xảy ra $\left\{ \begin{array}
  \sin x = 0  \\
  \cos x = 1  \\
\end{array}  \right. \Leftrightarrow x = 2k\pi $
Vậy $\left\{ \begin{array}
  {y_{\max }} = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi   \\
  {y_{\min }} =  - 1 \Leftrightarrow x = 2k\pi   \\
\end{array}  \right.$

Ví dụ 5:
Cho hàm số $y = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$. Hãy tìm Max $y$trên miền xác định của nó.
Lời giải:
Vì $\sin x$và $\cos x$ không đồng thời bằng 1 nên $y$ xác định trên R.
${Y_0}$ thuộc miền giá trị của hàm số khi và chỉ khi ${Y_0} = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$ có nghiệm.
$ \Leftrightarrow {Y_0}\sin x + \left( {{Y_0} - 1} \right)\cos x = 2{Y_0} + 2$ có nghiệm.
$\begin{array}
  {\left( {2{Y_0} + 2} \right)^2} \leqslant {Y_0}^2 + {\left( {{Y_0} - 1} \right)^2}  \\
   \Leftrightarrow 2{Y_0}^2 + 10{Y_0} + 3 \leqslant 0  \\
   \Leftrightarrow \frac{{ - 5 - \sqrt {19} }}{2} \leqslant {Y_0} \leqslant \frac{{ - 5 + \sqrt {19} }}{2}  \\
\end{array} $
Vậy ${y_{\max }} = \frac{{ - 5 + \sqrt {19} }}{2}$

Bài tập rèn luyện
CMR $\Delta ABC$đều khi nó thỏa mãn một trong các đẳng thức sau:
1)    $\cos A\cos B + \cos B\cos C + \cos C\cos A = \frac{3}{4}$
2)    $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$
3)    $\frac{1}{{\sin 2A}} + \frac{1}{{\sin 2B}} + \frac{1}{{\sin 2C}} = \frac{{\sqrt 3 }}{2} + \frac{1}{2}\tan A\tan B\tan C$
4)    ${\left( {\frac{{{a^2} + {b^2} + {c^2}}}{{\cot A + \cot B + \cot C}}} \right)^2} = \frac{{{a^2}{b^2}{c^2}}}{{\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}}}$
5)    $\frac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \frac{1}{2}$
6)    ${l_a}{l_b}{l_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
7)    ${m_a}{m_b}{m_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
8)    $bc\cot \frac{A}{2} + ca\cot \frac{B}{2} + ab\cot \frac{C}{2} = 12S$
9)    $\left( {1 + \frac{1}{{\sin A}}} \right)\left( {1 + \frac{1}{{\sin B}}} \right)\left( {1 + \frac{1}{{\sin C}}} \right) = 5 + \frac{{26\sqrt 3 }}{9}$

Chat chit và chém gió
  • Nguyễn Nhung: n t k đọc đc @@@ 3/27/2017 10:50:56 AM
  • Lãnh Hàn Băng Ngọc: V 3/27/2017 10:51:00 AM
  • Lãnh Hàn Băng Ngọc: ninh ơi viết lại đi 3/27/2017 10:51:09 AM
  • Lãnh Hàn Băng Ngọc: laughing 3/27/2017 10:51:13 AM
  • Thiên Hạ Vô Song: chịu thôi viết lại cũng thế rolling_on_the_floor 3/27/2017 10:51:16 AM
  • Nguyễn Nhung: thuj k cần đâu 3/27/2017 10:51:17 AM
  • Lãnh Hàn Băng Ngọc: t đang giúp bà đó 3/27/2017 10:51:27 AM
  • Lãnh Hàn Băng Ngọc: bảo ông ý chép sang bản kh cho 3/27/2017 10:51:40 AM
  • Lãnh Hàn Băng Ngọc: rolling_on_the_floor 3/27/2017 10:51:44 AM
  • Nguyễn Nhung: kia là tan pi/4=(Zc-ZL)/R ak 3/27/2017 10:51:46 AM
  • Thiên Hạ Vô Song: ò 3/27/2017 10:51:50 AM
  • Thiên Hạ Vô Song: lượng giác hình vuông 3/27/2017 10:52:08 AM
  • Thiên Hạ Vô Song: hình tam giác vuông chớ 3/27/2017 10:52:13 AM
  • Nguyễn Nhung: tính ra Zc 3/27/2017 10:52:47 AM
  • Nguyễn Nhung: xog s 3/27/2017 10:52:56 AM
  • Thiên Hạ Vô Song: đề hỏi Zc 3/27/2017 10:53:04 AM
  • Thiên Hạ Vô Song: Dung kháng 3/27/2017 10:53:06 AM
  • Nguyễn Nhung: ak uk quên laughing) 3/27/2017 10:53:14 AM
  • Thiên Hạ Vô Song: tối rồi 3/27/2017 10:53:44 AM
  • Lãnh Hàn Băng Ngọc: thôi t đi ngủ đây 3/27/2017 10:53:47 AM
  • Thiên Hạ Vô Song: nên ngủ đi tỷ ơi rolling_on_the_floor 3/27/2017 10:53:47 AM
  • Lãnh Hàn Băng Ngọc: pp 3/27/2017 10:53:49 AM
  • Thiên Hạ Vô Song:3/27/2017 10:53:52 AM
  • Thiên Hạ Vô Song:3/27/2017 10:53:53 AM
  • Thiên Hạ Vô Song: NGa ngố ngủ sớm thế 3/27/2017 10:53:56 AM
  • Lãnh Hàn Băng Ngọc: chốc vô sau 3/27/2017 10:53:59 AM
  • Thiên Hạ Vô Song: ko thể tin đc 3/27/2017 10:54:03 AM
  • Lãnh Hàn Băng Ngọc: chốc t vô 3/27/2017 10:54:10 AM
  • Lãnh Hàn Băng Ngọc: bh t hok đã 3/27/2017 10:54:19 AM
  • Lãnh Hàn Băng Ngọc: chưa đc j nên hồn đây nè 3/27/2017 10:54:29 AM
  • Lãnh Hàn Băng Ngọc: treo máy nên có j thì gọi sau 3/27/2017 10:54:57 AM
  • Nguyễn Nhung: ủa mà 3/27/2017 10:54:57 AM
  • Nguyễn Nhung: đệ tính xem ra bnd di 3/27/2017 10:55:01 AM
  • Nguyễn Nhung: s t tính nó k có dda nào đúng @@ 3/27/2017 10:55:10 AM
  • Nguyễn Nhung: ak ak 3/27/2017 10:55:21 AM
  • Nguyễn Nhung: thujj 3/27/2017 10:55:23 AM
  • Thiên Hạ Vô Song: hả 3/27/2017 10:55:26 AM
  • Nguyễn Nhung: đúng oi 3/27/2017 10:55:27 AM
  • Thiên Hạ Vô Song: @@ 3/27/2017 10:55:29 AM
  • Nguyễn Nhung: t tỉ ngủ dây 3/27/2017 10:55:38 AM
  • Nguyễn Nhung: Bye đệ 3/27/2017 10:55:40 AM
  • Thiên Hạ Vô Song: uh 3/27/2017 10:55:41 AM
  • Thiên Hạ Vô Song: tỷ ngủ ngon 3/27/2017 10:55:43 AM
  • Nguyễn Nhung: bye Nga chóa 3/27/2017 10:55:43 AM
  • Lee Han: big_grin 3/27/2017 10:55:45 AM
  • Nguyễn Nhung: tí 2 nfg nnmđ 3/27/2017 10:55:49 AM
  • Nguyễn Nhung: Bye cả c T nưuax 3/27/2017 10:55:53 AM
  • Nguyễn Nhung: c nnmdd 3/27/2017 10:55:56 AM
  • Nguyễn Nhung: wave 3/27/2017 10:56:02 AM
  • Lee Han: pp Nhung ^^ 3/27/2017 10:56:11 AM
  • Thiên Hạ Vô Song: haiz 3/27/2017 10:57:40 AM
  • Thiên Hạ Vô Song: Tâm ơi 3/27/2017 10:57:44 AM
  • TN: bb mn nha 3/27/2017 10:57:55 AM
  • Thiên Hạ Vô Song:3/27/2017 10:57:59 AM
  • TN: e ngủ đây 3/27/2017 10:57:59 AM
  • Thiên Hạ Vô Song: Bắc tự nhiên xuất hiện 3/27/2017 10:58:03 AM
  • TN: mn ngủ ngon 3/27/2017 10:58:04 AM
  • Thiên Hạ Vô Song: giật mình @@ 3/27/2017 10:58:06 AM
  • Thiên Hạ Vô Song: ngủ ngon 3/27/2017 10:58:09 AM
  • Lee Han: còn ai k ^^ 3/27/2017 11:02:19 AM
  • Thiên Hạ Vô Song: còn 3/27/2017 11:03:08 AM
  • 123456789: :V 3/27/2017 11:03:32 AM
  • Thiên Hạ Vô Song: Minh 3/27/2017 11:03:37 AM
  • Thiên Hạ Vô Song: chơi game 18+ ko 3/27/2017 11:03:39 AM
  • Thiên Hạ Vô Song: AHIHIHIHIIHI 3/27/2017 11:03:40 AM
  • 123456789: mẹ :V nửa đêm nửa hôm 3/27/2017 11:03:57 AM
  • Thiên Hạ Vô Song: haiz 3/27/2017 11:04:05 AM
  • Thiên Hạ Vô Song: Bọn nhật nhiều game hentai vl 3/27/2017 11:04:11 AM
  • 123456789: ko Lm nửa hả :v 3/27/2017 11:04:17 AM
  • 123456789: nhiều anime vc laughing 3/27/2017 11:04:26 AM
  • Thiên Hạ Vô Song: đang muốn thua mà nó cứ thắng 3/27/2017 11:04:30 AM
  • Thiên Hạ Vô Song: ko chơi nữa 3/27/2017 11:04:33 AM
  • Thiên Hạ Vô Song: T_T 3/27/2017 11:04:33 AM
  • 123456789: vãi :V 3/27/2017 11:05:18 AM
  • Thiên Hạ Vô Song: tui tiếp tục hành trì Harem đay 3/27/2017 11:05:46 AM
  • Thiên Hạ Vô Song: ông cố gắng nhóe rolling_on_the_floor 3/27/2017 11:05:49 AM
  • 123456789: vãi :33 3/27/2017 11:07:00 AM
  • Lee Han: laughing 3/27/2017 11:07:49 AM
  • Bon Bon: hú hú 3/27/2017 11:08:39 AM
  • Bon Bon: còn ai ko 3/27/2017 11:08:45 AM
  • Bon Bon: rolling_on_the_floor 3/27/2017 11:09:07 AM
  • 123456789: :V 3/27/2017 11:09:17 AM
  • Bon Bon: còn hả 3/27/2017 11:09:26 AM
  • Bon Bon: chào 9 3/27/2017 11:09:40 AM
  • Bon Bon: rolling_on_the_floor 3/27/2017 11:09:46 AM
  • 123456789: @@ 3/27/2017 11:11:17 AM
  • Lee Han: laughing 3/27/2017 11:13:18 AM
  • Lee Han: Bon ngủ dậy rùi ak 3/27/2017 11:13:26 AM
  • Thiên Hạ Vô Song: vl rolling_on_the_floor 3/27/2017 11:17:21 AM
  • Thiên Hạ Vô Song: mà Tâm ko ngủ à 3/27/2017 11:17:31 AM
  • Lee Han: các em chưa ngủ chụy sao ngủ dk ^^ 3/27/2017 11:18:13 AM
  • ๖ۣۜDämonღ: hế nhô 4 cẳng big_grin 3/27/2017 11:18:17 AM
  • ๖ۣۜDämonღ: sao dạo này fake lắm thế 3/27/2017 11:18:24 AM
  • Lee Han: laughing 3/27/2017 11:19:24 AM
  • ๖ۣۜDämonღ: rảnh vl rolling_on_the_floor 3/27/2017 11:20:13 AM
  • Lee Han: rolling_on_the_floor 3/27/2017 11:20:18 AM
  • ๖ۣۜDämonღ: lâu lâu vô chào hỏi tí 3/27/2017 11:20:56 AM
  • ๖ۣۜDämonღ: thả xương này ~~ 3/27/2017 11:21:00 AM
  • Lee Han: laughing 3/27/2017 11:21:58 AM
  • Trafaldar D Water Law: big_grin 3/27/2017 12:02:34 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Đức Vỹ
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Táo Dễ thương
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • phanthilanphuong2011
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • ¸.•♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•.¸
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Tôi Tên "NHÁI"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Quỳnh Vũ
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • ๖ۣۜQueenღ
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • HMU-HY-18
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • ۞♠ξ__Judal__ζ♣۞
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄Xấu xí và rất xấu xa ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜNanhBạc๖ۣ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Lành
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • ProGK
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • ๖ۣۜSadღ
  • phng_pepsi
  • Young Wild and Free
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • johnnn509
  • .
  • Nhok Sam
  • Nguyễn Đức Minh
  • Ryo
  • TN
  • cụ nhỏ
  • Update
  • zzz02042001
  • w
  • Mãi là vk đáng ju của ck
  • egaehaneya
  • Trangg"xxx Kiềuu"xxx
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • Bon Bon
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • BB
  • NiuNiu
  • thanhnga759
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • ChoaN
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • math
  • tarrasqueaohk
  • Caohuongjc
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • linhshaldy
  • hongtintk123
  • leduydung
  • ajajsssss7
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • phicong98lbls