ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN


Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác

1. Định tính tam giác:
a) Tam giác đều:

Đối với loại bài nhận dạng tam giác đều, ta chỉ cần giải bất đẳng thức lượng giác và chỉ ra điều kiện xảy ra dấu bằng của BĐT đó. Ta sẽ xét các ví dụ sau để thấy rõ điều đó.

Ví dụ 1:
CMR $\Delta ABC$đều khi thỏa: ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Lời giải:
Theo Bunhiacốpxki ta có:
${\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 3\left( {{m_a}^2 + {m_b}^2 + {m_c}^2} \right)$
$\begin{array}
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant \frac{9}{4}\left( {{a^2} + {b^2} + {c^2}} \right)  \\
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}\left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)  \\
\end{array} $
mà   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
$ \Rightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}.\frac{9}{4} = \frac{{81}}{4}{R^2}$
$ \Rightarrow $ ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều $ \Rightarrow $Đpcm.

Ví dụ 2:    
CMR nếu $\sin \frac{A}{2}\sin \frac{B}{2} = \frac{{\sqrt {ab} }}{{4c}}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\frac{{\sqrt {ab} }}{{4c}} \leqslant \frac{{a + b}}{{8c}} = \frac{{2R\left( {\sin A + \sin B} \right)}}{{2R.8\sin C}} = \frac{{2R.2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2}}}{{2R.8.2\sin \frac{C}{2}\cos \frac{C}{2}}} = \frac{{\cos \frac{{A - B}}{2}}}{{8\sin \frac{C}{2}}} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}$
$\begin{array}
   \Rightarrow \sin \frac{A}{2}\sin \frac{B}{2} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}  \\
   \Leftrightarrow 8\cos \frac{{A + B}}{2}\sin \frac{A}{2}\sin \frac{B}{2} \leqslant 1  \\
   \Leftrightarrow 4\cos \frac{{A + B}}{2}\left( {\cos \frac{{A - B}}{2} - \cos \frac{{A + B}}{2}} \right) - 1 \leqslant 0  \\
\end{array} $
$\begin{array}
   \Leftrightarrow 4{\cos ^2}\frac{{A + B}}{2} - 4\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 1 \geqslant 0  \\
   \Leftrightarrow {\left( {2\cos \frac{{A + B}}{2} - \cos \frac{{A - B}}{2}} \right)^2} + {\sin ^2}\frac{{A - B}}{2} \geqslant 0  \\
    \\
\end{array} $
$ \Rightarrow $ Đpcm.
    
Ví dụ 3:
CMR $\Delta ABC$đều khi nó thỏa: $2\left( {{h_a} + {h_b} + {h_c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
Lời giải:
Theo đề bài ta có:
$2.2p\left( {\frac{r}{a} + \frac{r}{b} + \frac{r}{c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
$\begin{array}
   \Leftrightarrow \frac{r}{a} + \frac{r}{b} + \frac{r}{c} = \frac{{\sqrt 3 }}{2}  \\
   \Leftrightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{{\sqrt 3 }}{2}  \\
\end{array} $
Ta lại có:  $\frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} \leqslant \frac{1}{4}\left( {\frac{1}{{\cot \frac{A}{2}}} + \frac{1}{{\cot \frac{B}{2}}}} \right) = \frac{1}{4}\left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)$
Tương tự ta có:
$\frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} = \frac{1}{4}\left( {\tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
$\frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{1}{4}\left( {\tan \frac{C}{2} + \tan \frac{A}{2}} \right)$
$\begin{array}
   \Rightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right)  \\
   \Rightarrow \frac{{\sqrt 3 }}{2} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right) \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu thỏa $S = 3Rr\frac{{\sqrt 3 }}{2}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\begin{array}
  S = 2{R^2}\sin A\sin B\sin C = 2.{R^2}.2.2.2.\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
   = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}.4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = r4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
\end{array} $
$ \leqslant r4R\frac{{3\sqrt 3 }}{8} = \frac{{3\sqrt 3 }}{2}Rr$
$ \Rightarrow $ Đpcm.

Ví dụ 5:
CMR $\Delta ABC$đều khi nó thỏa ${m_a}{m_b}{m_c} = pS$
Lời giải:
Ta có:  ${m_a}^2 = \frac{1}{4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) = \frac{1}{4}\left( {{b^2} + {c^2} - 2bc\cos A} \right) \geqslant \frac{1}{2}bc\left( {1 + \cos A} \right) = bc{\cos ^2}\frac{A}{2}$

$\begin{array}
  \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \Rightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}  \\
   \Rightarrow {\cos ^2}A = \frac{{{b^2} + {c^2} - {a^2} + 2bc}}{{4bc}} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{4bc}} = \frac{{p\left( {p - a} \right)}}{{bc}}  \\
   \Rightarrow {m_a} \geqslant \sqrt {p\left( {p - a} \right)}   \\
\end{array} $
Tương tự ta có:
$\begin{array}
  \left\{ \begin{array}
  {m_b} \geqslant \sqrt {p\left( {p - b} \right)}   \\
  {m_c} \geqslant \sqrt {p\left( {p - c} \right)}   \\
\end{array}  \right.  \\
   \Rightarrow {m_a}{m_b}{m_c} \geqslant p\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = pS  \\
\end{array} $
$ \Rightarrow $ Đpcm.

b) Tam giác cân:
Đối với dạng bài nhận dạng tam giác cân, ta cần phải chỉ ra điều kiện xảy ra dấu bằng của bất đẳng thức là khi 2 biến bằng nhau và khác biến thứ ba. Ta xét các ví dụ sau:

Ví dụ 1:
CMR $\Delta ABC$cân khi nó thỏa điều kiện ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2}$ và nhọn.
Lời giải:
Ta có: $\tan A + \tan B = \frac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \frac{{2\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right) + \cos \left( {A - B} \right)}} = \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}}$
Vì $\cos \left( {A - B} \right) \leqslant 1 \Rightarrow \cos \left( {A - B} \right) - \cos C \leqslant 1 - \cos C = 2{\sin ^2}\frac{C}{2}$
$\begin{array}
   \Rightarrow \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}} \geqslant \frac{{2\sin C}}{{2{{\sin }^2}\frac{C}{2}}} = \frac{{4\sin \frac{C}{2}\cos \frac{C}{2}}}{{2{{\sin }^2}\frac{C}{2}}} = 2\cot \frac{C}{2} = 2\tan \frac{{A + B}}{2}  \\
   \Rightarrow \tan A + \tan B \geqslant 2\tan \frac{{A + B}}{2}  \\
\end{array} $
Từ giả thiết: ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2} \leqslant 2{\left( {\frac{{\tan A + \tan B}}{2}} \right)^2}$
$\begin{array}
   \Leftrightarrow 2\left( {{{\tan }^2}A + {{\tan }^2}B} \right) \leqslant {\tan ^2}A + {\tan ^2}B + 2\tan A\tan B  \\
   \Leftrightarrow {\left( {\tan A - \tan B} \right)^2} \leqslant 0  \\
   \Leftrightarrow A = B  \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 2:
CMR $\Delta ABC$cân khi thỏa ${h_a} = \sqrt {bc} \cos \frac{A}{2}$
Lời giải:
Trong mọi tam giác ta luôn có: ${h_a} \leqslant {l_a} = \frac{{2bc}}{{b + c}}\cos \frac{A}{2}$
Mà $b + c \geqslant 2\sqrt {bc}  \Rightarrow \frac{{2bc}}{{b + c}} \leqslant \frac{{bc}}{{\sqrt {bc} }} = \sqrt {bc} $
$ \Rightarrow \frac{{2bc}}{{b + c}}\cos \frac{A}{2} \leqslant \sqrt {bc} \cos \frac{A}{2} \Rightarrow {h_a} \leqslant \sqrt {bc} \cos \frac{A}{2}$
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 3:
CMR nếu thỏa $r + {r_a} = 4R\sin \frac{B}{2}$ thì $\Delta ABC$cân.
Lời giải:
Ta có:
$\begin{array}
  r + {r_a} = \left( {p - b} \right)\tan \frac{b}{2} + p\tan \frac{B}{2} = \left( {2p - b} \right)\tan \frac{B}{2} = \left( {a + c} \right)\tan \frac{B}{2} = 2R\left( {\sin A + \sin C} \right)\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}}  \\
   = 4R\sin \frac{{A + C}}{2}\cos \frac{{A + C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\cos \frac{B}{2}\cos \frac{{A - C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\sin \frac{B}{2}\cos \frac{{A - C}}{2} \leqslant 4R\sin \frac{B}{2}  \\
   \Rightarrow r + {r_a} \leqslant 4R\sin \frac{B}{2}  \\
\end{array} $
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu $S = \frac{1}{4}\left( {{a^2} + {b^2}} \right)$ thì $\Delta ABC$cân.
Lời giải:
Ta có: ${a^2} + {b^2} \geqslant 2ab \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant \frac{1}{2}ab \geqslant \frac{1}{2}ab\sin C = S$
$ \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant S \Rightarrow $$\Delta ABC$cân nếu thỏa đk đề bài.

Ví dụ 5:
CMR $\Delta ABC$cân khi thỏa $2\cos A + \cos B + \cos C = \frac{9}{4}$
Lời giải:
Ta có:
$2\cos A + \cos B + \cos C = 2\left( {1 - 2{{\sin }^2}\frac{A}{2}} \right) + 2\cos \frac{{B + C}}{2}\cos \frac{{B - C}}{2}$
  $\begin{array}
   =  - 4{\sin ^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4} =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} + \frac{1}{4}{\cos ^2}\frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4}  \\
   =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} - \frac{1}{4}{\sin ^2}\frac{{B - C}}{2} + \frac{9}{4} \leqslant \frac{9}{4}  \\
\end{array} $
Đẳng thức xảy ra khi B=C $ \Rightarrow $ Đpcm.

c) Tam giác vuông:
Đối với dạng bài tập nhận dạng tam giác vuông, ta ít khi cần dùng đến các BĐT lượng giác mà thường là chỉ cần sử dụng các phương pháp biến đổi tương đương là được.    

Ví dụ 1:
Cho tam giác ABC có các góc thỏa mãn hệ thức $3\left( {\cos B + 2\sin C} \right) + 4\left( {\sin B + 2\cos C} \right) = 15$
Chứng minh $\vartriangle $ABC vuông.
Lời giải:
Theo Bunhiacốpxki ta có:
$\left\{ \begin{array}
  3\cos B + 4\sin B \leqslant \sqrt {\left( {{3^2} + {4^2}} \right)\left( {{{\cos }^2}B + {{\sin }^2}B} \right)}  = 5  \\
  6\sin C + 8\cos C \leqslant \sqrt {\left( {{6^2} + {8^2}} \right)\left( {{{\sin }^2}C + {{\cos }^2}C} \right)}  = 10  \\
\end{array}  \right.$
$ \Rightarrow 3\cos B + 4\sin B + 6\sin C + 8\cos C \leqslant 15$
Đẳng thức xảy ra khi và chỉ khi:
$\left\{ \begin{array}
  3\cos B + 4\sin B = 5  \\
  6\sin C + 8\cos C = 10  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \frac{{\cos B}}{3} = \frac{{\sin B}}{4}  \\
  \frac{{\sin C}}{6} = \frac{{\cos C}}{8}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \tan B = \frac{4}{3}  \\
  \cot C = \frac{4}{3}  \\
\end{array}  \right. \Leftrightarrow \tan B = \cot C \Leftrightarrow B + C = \frac{\pi }{2}$
Vậy tam giác ABC vuông tại A.

2. Cực trị lượng giác:
Đây là một lĩnh vực khó, đòi hỏi người giải cần phải tự mình sử dụng khéo léo các bất đẳng thức lượng giác phù hợp cũng như phải có một vốn kiến thức khá lớn về bất đẳng thức để có thể tìm ra đáp án của bài toán.

Ví dụ 1:
Tìm giá trị nhỏ nhất của hàm số:
$f(x,y) = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Với a,b,c,d là các hằng số dương.
Lời giải:
Đặt $f(x,y) = a{f_1} + b{f_2}$ với ${f_1} = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}}$ và ${f_2} = \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Ta có:  $c + d = c\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + d\left( {{{\sin }^2}y + {{\cos }^2}y} \right)$                             
Do đó: $\left( {c + d} \right){f_1} = \left[ {\left( {c{{\sin }^2}x + d{{\cos }^2}y} \right) + \left( {c{{\cos }^2}x + d{{\sin }^2}y} \right)} \right]\left[ {\frac{{{{\sin }^4}x}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{{{\cos }^4}x}}{{c{{\cos }^2}x + d{{\sin }^2}y}}} \right]$
$ \geqslant {\left( {\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} \frac{{{{\sin }^2}x}}{{\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} }} + \sqrt {c{{\cos }^2}x + d{{\sin }^2}y} \frac{{{{\cos }^2}x}}{{\sqrt {c{{\cos }^2}x + d{{\sin }^2}y} }}} \right)^2} = 1$
$ \Rightarrow {f_1} \geqslant \frac{1}{{c + d}}$. Tương tự $ \Rightarrow {f_2} \geqslant \frac{1}{{c + d}}$. Vậy $f(x,y) = a{f_1} + b{f_2} \geqslant \frac{{a + b}}{{c + d}}$

Ví dụ 2:
Tìm giá trị nhỏ nhất của biểu thức: $P = \cos 3A + \cos 3B - \cos 3C$
Lời giải:
Ta có: $\cos 3C = \cos 3\left[ {\pi  - \left( {A + B} \right)} \right] = \cos \left[ {3\pi  - 3\left( {A - B} \right)} \right] =  - \cos 3\left( {A + B} \right)$ nên
$\begin{array}
  P = \cos 3A + \cos 3B + \cos 3\left( {A + B} \right) = 2\cos 3\left( {\frac{{A + B}}{2}} \right)\cos 3\left( {\frac{{A - B}}{2}} \right) + 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) - 1  \\
   \Rightarrow P + \frac{3}{2} = 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) + 2\cos \left( {\frac{{A - B}}{2}} \right)\cos 3\left( {\frac{{A + B}}{2}} \right) + \frac{1}{2} = f(x,y)  \\
\end{array} $
$\Delta \prime  = {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) - 1 \leqslant 0 \Rightarrow P \geqslant  - \frac{3}{2}$
$\begin{array}
  P =  - \frac{3}{2} \Leftrightarrow \left\{ \begin{array}
  \Delta \prime  = 0  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) = 1  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \cos 3A =  - \frac{1}{2}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \left[ \begin{array}
  A = \frac{{2\pi }}{9}  \\
  A = \frac{{4\pi }}{9}  \\
\end{array}  \right.  \\
\end{array}  \right.  \\
\end{array} $
Vậy ${P_{\min }} =  -  - \frac{3}{2} \Leftrightarrow \left[ \begin{array}
  A = B = \frac{{2\pi }}{9},C = \frac{{5\pi }}{9}  \\
  A = B = \frac{{4\pi }}{9},C = \frac{\pi }{9}  \\
\end{array}  \right.$

Ví dụ 3:
Tìm giá trị lớn nhất của biểu thức: $P = \frac{{{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C}}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}}$
Lời giải:
Ta có:
$P = \frac{3}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}} - 1$
$\begin{array}
   = \frac{3}{{3 - \left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)}} - 1  \\
   \leqslant \frac{3}{{3 - \frac{9}{4}}} - 1 = 3  \\
\end{array} $
Do đó ${P_{\max }} = 3 \Leftrightarrow \Delta ABC$đều.

Ví dụ 4:
Tìm giá trị lớn nhất, nhỏ nhất của $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x} $
Lời giải:
Điều kiện: $\sin x \geqslant 0,\cos x \geqslant 0$
Ta có: $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \leqslant \sqrt[4]{{\sin x}} \leqslant 1$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}
  \sin x = 1  \\
  \cos x = 0  \\
\end{array}  \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi $
Mặt khác $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \geqslant  - \cos x \geqslant  - 1$
Dấu bằng xảy ra $\left\{ \begin{array}
  \sin x = 0  \\
  \cos x = 1  \\
\end{array}  \right. \Leftrightarrow x = 2k\pi $
Vậy $\left\{ \begin{array}
  {y_{\max }} = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi   \\
  {y_{\min }} =  - 1 \Leftrightarrow x = 2k\pi   \\
\end{array}  \right.$

Ví dụ 5:
Cho hàm số $y = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$. Hãy tìm Max $y$trên miền xác định của nó.
Lời giải:
Vì $\sin x$và $\cos x$ không đồng thời bằng 1 nên $y$ xác định trên R.
${Y_0}$ thuộc miền giá trị của hàm số khi và chỉ khi ${Y_0} = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$ có nghiệm.
$ \Leftrightarrow {Y_0}\sin x + \left( {{Y_0} - 1} \right)\cos x = 2{Y_0} + 2$ có nghiệm.
$\begin{array}
  {\left( {2{Y_0} + 2} \right)^2} \leqslant {Y_0}^2 + {\left( {{Y_0} - 1} \right)^2}  \\
   \Leftrightarrow 2{Y_0}^2 + 10{Y_0} + 3 \leqslant 0  \\
   \Leftrightarrow \frac{{ - 5 - \sqrt {19} }}{2} \leqslant {Y_0} \leqslant \frac{{ - 5 + \sqrt {19} }}{2}  \\
\end{array} $
Vậy ${y_{\max }} = \frac{{ - 5 + \sqrt {19} }}{2}$

Bài tập rèn luyện
CMR $\Delta ABC$đều khi nó thỏa mãn một trong các đẳng thức sau:
1)    $\cos A\cos B + \cos B\cos C + \cos C\cos A = \frac{3}{4}$
2)    $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$
3)    $\frac{1}{{\sin 2A}} + \frac{1}{{\sin 2B}} + \frac{1}{{\sin 2C}} = \frac{{\sqrt 3 }}{2} + \frac{1}{2}\tan A\tan B\tan C$
4)    ${\left( {\frac{{{a^2} + {b^2} + {c^2}}}{{\cot A + \cot B + \cot C}}} \right)^2} = \frac{{{a^2}{b^2}{c^2}}}{{\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}}}$
5)    $\frac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \frac{1}{2}$
6)    ${l_a}{l_b}{l_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
7)    ${m_a}{m_b}{m_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
8)    $bc\cot \frac{A}{2} + ca\cot \frac{B}{2} + ab\cot \frac{C}{2} = 12S$
9)    $\left( {1 + \frac{1}{{\sin A}}} \right)\left( {1 + \frac{1}{{\sin B}}} \right)\left( {1 + \frac{1}{{\sin C}}} \right) = 5 + \frac{{26\sqrt 3 }}{9}$

Chat chit và chém gió
  • vohuutronght2: hi mnsmug 7/14/2021 2:52:55 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: bh nhắn vô đây chắc chả còn ai rep :vvv 7/15/2021 2:40:58 PM
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄: Ngày xưa thì chưa kịp đọc đã trôi 7/15/2021 2:41:13 PM
  • bebeolamdo: hi happy 7/18/2021 7:39:51 PM
  • ๖ۣۜBossღ: yawn Dịch quá, thất học rồi 7/19/2021 8:33:49 AM
  • HauDueMatTroiVip: happy 7/29/2021 8:49:16 PM
  • HauDueMatTroiVip: Quang come back 7/29/2021 8:49:37 PM
  • meomeocutduoi:8/13/2021 12:27:44 AM
  • meomeocutduoi: tongue 8/13/2021 12:27:45 AM
  • meomeocutduoi: à nhông xê ô 8/13/2021 12:27:54 AM
  • meomeocutduoi: big_grin 8/13/2021 4:05:36 PM
  • thanhbinhyenbai: hế lô 8/15/2021 10:35:26 AM
  • Mchaau: Haii 8/20/2021 3:51:36 PM
  • Mchaau: :'winking 8/20/2021 3:51:47 PM
  • Mchaau: ;'winking 8/20/2021 3:51:53 PM
  • Mchaau: Ủa alo 8/20/2021 3:52:03 PM
  • Mchaau: U la tr 8/20/2021 3:52:06 PM
  • hellobaotvvn: hế lô 9/5/2021 6:03:15 PM
  • anh.ngochoang: wave 9/12/2021 10:34:56 AM
  • daidoan3107: hi 10/4/2021 3:12:33 PM
  • hatanphat201005: 🪓 cho một bô bây giờ 10/7/2021 2:57:30 PM
  • hatanphat201005: wave 10/7/2021 3:18:19 PM
  • hatanphat201005: http://static.hoctainha.vn/image/emoticons/wave.gif 10/7/2021 3:18:27 PM
  • deenhu23082008: hii mng 10/7/2021 11:05:49 PM
  • tuenhucinhdepp2308: hiii 10/7/2021 11:10:10 PM
  • tuenhucinhdepp2308: yawn 10/7/2021 11:10:36 PM
  • hatanphat201005: hi 10/8/2021 7:04:05 AM
  • hatanphat201005: có ai kg ? whistling 10/8/2021 7:04:57 AM
  • hatanphat201005: doh 10/8/2021 7:06:22 AM
  • hatanphat201005: doh 10/8/2021 7:12:25 AM
  • minhcc2009: hello các anh 10/19/2021 8:26:27 PM
  • minhcc2009: em là minh 2009 10/19/2021 8:26:34 PM
  • minhcc2009: trường Trung học Cơ Sở Xuân Thu 10/19/2021 8:26:51 PM
  • minhcc2009: Câu hỏi số 18/20 Điểm: 80 trên tổng số 100 Bật/Tắt âm thanh báo đúng/sai 10/19/2021 8:37:59 PM
  • Mưa Đêm: Hi mọi người 10/21/2021 12:08:12 AM
  • Mưa Đêm: Ui, lâu lắm rồi mới quay lại đây 10/21/2021 12:09:15 AM
  • zzzvuzzz.16510: hi 10/22/2021 8:18:11 AM
  • ducbanminh8: hello 10/25/2021 8:34:15 AM
  • heomoiletri2007: ? 10/26/2021 2:04:23 PM
  • heomoiletri2007: hello 10/26/2021 2:05:35 PM
  • Mưa Đêm: hiii 10/28/2021 11:52:28 PM
  • Minhtvno2: hi 10/30/2021 8:51:33 PM
  • Minhtvno2: hahaa cân cả hộithumbs_up 10/30/2021 8:53:27 PM
  • hatanphat201005: hi 11/3/2021 6:22:14 PM
  • hatanphat201005: transformertransformer 11/3/2021 6:57:05 PM
  • hatanphat201005: ko ai vô chánnnnnnnnnnnnnnnnn 11/4/2021 5:52:17 AM
  • hatanphat201005: worried 11/4/2021 5:53:40 AM
  • hatanphat201005: hi mn 11/11/2021 5:59:17 PM
  • Phương Trâm: hiiii 11/12/2021 3:27:57 PM
  • Phương Trâm: ai giỏi toán hong ạ có thể giúp mình ôn thi giữa kì được hông TvT 11/12/2021 3:28:05 PM
  • Quiss Buu: alo 11/20/2021 4:21:12 PM
  • Mưa Đêm: ô la 11/30/2021 4:21:44 AM
  • vuikieu238: alo 12/7/2021 9:36:20 AM
  • vuikieu238: :33 12/7/2021 9:36:27 AM
  • vuikieu238: nay mới biết có cái chỗ này luôn 12/7/2021 9:36:45 AM
  • ๖ۣۜBossღ: Mấy anh chị đâu hết rồi, vào ôn kỉ niệm nào. Lâu vl 5 năm rồi. 12/10/2021 8:55:11 PM
  • vohuuhung80: ê 12/11/2021 7:38:41 PM
  • vohuuhung80: mọi n 12/11/2021 7:38:46 PM
  • vohuuhung80: ai bt các chọn lớp ko ạ 12/11/2021 7:39:06 PM
  • anhvoviet123: uầy 12/22/2021 7:28:36 AM
  • anhvoviet123: vip nhỉ 12/22/2021 7:28:56 AM
  • anhvoviet123: alo 12/22/2021 7:29:16 AM
  • anhvoviet123: chả còn ai 12/22/2021 9:14:38 AM
  • anhvoviet123: I love you 12/22/2021 9:14:44 AM
  • anhvoviet123: 2k6 làm quen ah 12/22/2021 9:25:06 AM
  • anhvoviet123: Mình góp ý nhé. Ý kiến của mình là như này, mình nói ra nếu có mất lòng anh em thì mình cũng chịu, tại vì mình cũng chỉ muốn đóng góp một chút ý kiến cho anh em biết là mình cũng là một người có ý kiến, mình là con người không thích nói dài dòng, chỉ đơn giản muốn góp ý kiến cho mọi người biết thôi, mong mọi người hãy hiểu và thông cảm cho mình, mình xin góp ý một ý kiến cực kì ngắn gọn cho anh em hiểu mình không muốn vòng vo, nói dài chỉ là một cái ý kiến ngắn gọn không cần dài. Đấy nói tóm lại là mình góp ý vậy thôi còn anh em hiểu hay không thì cũng không biết! 12/22/2021 9:38:34 PM
  • phanhuukhanhabc: hello 1/27/2022 12:53:15 PM
  • phanhuukhanhabc: alo có ai ở nhà không ? 1/27/2022 12:53:45 PM
  • phanhuukhanhabc: wave 1/27/2022 12:54:27 PM
  • Mưa Đêm: 7 năm trôi qua nhanh thật, giờ chả còn ai ở đây sad 2/22/2022 1:44:57 AM
  • ๖ۣۜBossღ: Quá khứ dĩ vãng, không thể xóa nhòa broken_heart 2/22/2022 8:16:41 AM
  • Mưa Đêm: Hi Boss 2/23/2022 2:09:04 AM
  • C50™: :v 2/23/2022 6:51:37 PM
  • C50™: cũng 5 năm r 2/23/2022 6:51:56 PM
  • C50™: từ 2016 2/23/2022 6:54:47 PM
  • minhmama357: cccccccccccccc 3/6/2022 8:47:17 PM
  • nhungtongdp.12.13: mọi người ơi cíu 3/9/2022 12:25:36 AM
  • nhungtongdp.12.13: ai chỉ cho em cách xác định nghiệm của hệ bất phương trình 1 ẩn được k ạ huhu 3/9/2022 12:26:23 AM
  • ๖ۣۜDevilღ: hi 9/14/2022 5:12:09 PM
  • ๖ۣۜDevilღ: ai nhận ra tui không laughing 9/14/2022 5:12:16 PM
  • gwenhee2027: chào mn nha 9/14/2022 9:03:59 PM
  • MrQuang.HauDueMatTroi: hello 9/16/2022 8:51:34 PM
  • MrQuang.HauDueMatTroi: Lâu r ko vào đây :v 9/16/2022 8:51:55 PM
  • MrQuang.HauDueMatTroi: mới sương sương 6 năm 9/16/2022 8:53:23 PM
  • MrQuang.HauDueMatTroi: laughing 9/16/2022 8:53:33 PM
  • ๖ۣۜDevilღ: alo 12/13/2022 4:05:44 PM
  • Mưa Đêm: 9 năm trôi qua nhanh quá crying 1/25/2023 11:52:57 AM
  • tranhoangdeptrai1206: hế lô bọn mày 5/6/2024 9:25:58 PM
  • tranhoangdeptrai1206: đéo có ai à 5/6/2024 9:26:30 PM
  • tranhoangdeptrai1206: buồn nhể 5/6/2024 9:26:34 PM
  • qmanh24: Chắc ko còn ai 8/2/2024 10:34:37 PM
  • qmanh24: Vợ chồng t về thăm nhà sau nhiều năm rời nhà nè 8/2/2024 10:35:18 PM
  • thaomanhneee: wave 8/2/2024 10:35:33 PM
  • qmanh24: 😘😘😘😘 8/2/2024 10:36:05 PM
  • thaomanhneee: Chào cậu 8/2/2024 10:36:38 PM
  • qmanh24: Cậu chào vợ 8/2/2024 10:36:48 PM
  • taiprovuduc12: hi mn 10/4/2024 11:09:49 PM
  • nambuixuan15: Có Anh/chị nào không giúp giải với 10/10/2024 5:03:53 PM
  • nambuixuan15: 1 Cos²x - Sin2x = ----------- Sinx Đk: Sinx >0 và #0 10/10/2024 5:03:58 PM
  • nambuixuan15: Cos²x - Sin2x = 1/Sinx Đk: Sinx >0 và #0 10/10/2024 5:04:43 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • ahihi
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • .
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo9119* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minh
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • tranhai98
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trang
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • ☼SunShine❤️
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜBossღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • B҉ãO҉-t҉ố҉
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Hạ Vân
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • ☆☆Lãnh Hoàng Băng Ngọc ☆☆
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜNắng(M)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • ๖ۣۜNatsu
  • Băng
  • ๖ۣۜCold
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyendang241001
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Vũ Như Quỳnh
  • benganxd2509
  • pnt2912003
  • nhathan61
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Linh Lê Thùy
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • fbt1800555581
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • ๖ۣۜLãnh♌Băng ( ML)
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • Nguyen Le Na
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • Tuyết Nhi
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phúc Huy
  • Phùng THị Thu Hà
  • ๖ۣۜLãnh♌Huyết
  • ๖ۣۜNgược dòng thời gian
  • lehongminh22072001
  • Nguyễn Hồng Ngọc
  • ♓幸せ ♥╭╮♥ha ≧✯◡✯≦✌
  • admin
  • skud2003
  • Zidane
  • Cao Linh
  • Hạ Nhi
  • Kiệt2003
  • cuong3888684
  • Mây của trời cứ để gió cuốn đi
  • caodsao
  • le.tg.310314
  • hoa.khanh.lhyan2707
  • tuthaiduong012
  • aidhakfcgano1
  • hisname004
  • Tu hoc
  • honhutlinh
  • let02hb
  • vohieutrung99
  • laitridung2004
  • nguyenthuhangtdvp
  • thulively
  • btquyen11a2
  • giangbap0388
  • trung3152003
  • ntgu
  • ★F.29★
  • nguyenyen10082008
  • luongthimay21051981
  • nguyenngocminhtri.1233
  • 8a1day
  • thaithuhanglhp77
  • cuahanganhduc
  • ngolam230103
  • Uchiha Obito
  • thongoc1174
  • daihuenhatanh
  • phammaianh0210
  • thaonguyen.ht2404
  • thuythuypham1504
  • poiuytrewq
  • congtonle526
  • duolingo
  • duolingo
  • nducchinh8
  • huynguyen1032k5