CHỨNG MINH BĐT LƯỢNG GIÁC BẰNG BIẾN ĐỔI TƯƠNG ĐƯƠNG

Biến đổi lượng giác tương đương :
Phương pháp biến đổi lượng giác tương đương sử dụng các công thức lượng giác và sự biến đổi qua lại của các bất đẳng thức. Để có thể sử dụng tốt phương pháp này, cần nắm vững những kiến thức cần thiết về biến đổi lượng giác, các đẳng thức, bất đẳng thức trong tam giác.
Thông thường thì với phương pháp này, ta sẽ về dạng bất đẳng thức đúng hay quen thuộc. Ngoài ra, ta cũng có thể sử dụng hai kết quả quen thuộc $\left| {\sin x} \right| \leqslant 1$;$\left| {\cos x} \right| \leqslant 1$.

Ví dụ 1:
CMR:     $\frac{{1 - \sin \frac{\pi }{4}}}{{2\sin \frac{\pi }{4}}} > \sqrt {3\cos \frac{\pi }{7}} $
Lời giải:
Ta có : $1 - \sin \frac{\pi }{{14}} = \sin \frac{{3\pi }}{{14}} - \sin \frac{\pi }{{14}} + \sin \frac{{5\pi }}{{14}} - \sin \frac{{3\pi }}{{14}} + \sin \frac{{7\pi }}{{14}} - \sin \frac{{5\pi }}{{14}}$
             $ = 2sin\frac{\pi }{{14}}\left( {co{\text{s}}\frac{\pi }{7} + c{\text{os}}\frac{{2\pi }}{7} + c{\text{os}}\frac{{3\pi }}{7}} \right)$
$ \Rightarrow \frac{{1 - \sin \frac{\pi }{{14}}}}{{2\sin \frac{\pi }{{14}}}} = c{\text{os}}\frac{\pi }{7} + c{\text{os}}\frac{{2\pi }}{7} + c{\text{os}}\frac{{3\pi }}{7}$    (1)
Mặt khác ta có:
$c{\text{os}}\frac{\pi }{7} = \frac{1}{2}\left( {c{\text{os}}\frac{\pi }{7} + c{\text{os}}\frac{{3\pi }}{7} + c{\text{os}}\frac{{5\pi }}{7} + c{\text{os}}\frac{\pi }{7} + c{\text{os}}\frac{{4\pi }}{7} + c{\text{os}}\frac{{2\pi }}{7}} \right)$
        $ = c{\text{os}}\frac{\pi }{7}c{\text{os}}\frac{{2\pi }}{7} + c{\text{os}}\frac{{2\pi }}{7}c{\text{os}}\frac{{3\pi }}{7} + c{\text{os}}\frac{{3\pi }}{7}c{\text{os}}\frac{\pi }{7}$   (2)
Đặt   $x = c{\text{os}}\frac{\pi }{7},y = c{\text{os}}\frac{{2\pi }}{7},z = c{\text{os}}\frac{{3\pi }}{7}$
Khi đó từ (1),(2) ta có bất đẳng thức cần chứng minh tương đương với:
$x + y + z > \sqrt {3(xy + yz + xz)} $       (3)
Mà x , y ,z > 0 nên:
 (3) $ \Leftrightarrow {(x - y)^2} + {(y - z)^2} + {(z - x)^2} > 0$(4)
Vì x , y ,z từng đôi một khác nhau nên (4) đúng $ \Rightarrow $ đpcm.
Như  vậy, với các bất đẳng thức trên thì việc biến đổi lượng giác là bước then chốt để chứng minh bất đẳng thức. Sau khi sử dụng các biến đổi thì việc chứng minh bất đẳng thức trở nên dễ dàng.

Ví dụ 2:
CMR:    ${a^2} + {b^2} + {c^2} \geqslant 2(ab\sin 3x + ca\cos 2x - bc\sin x)$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với :
${a^2}({\sin ^2}2x + c{\text{o}}{{\text{s}}^2}2x) + {b^2}({\sin ^2}x + c{\text{o}}{{\text{s}}^2}x) + {c^2} \geqslant 2ab(\sin {\text{x}}c{\text{os}}2x + \sin 2x\cos x) + 2ca\cos 2x - 2bc\sin 2x$
$ \Leftrightarrow {a^2}({\sin ^2}2x + {b^2}{\sin ^2}x + {c^2} - 2ab\cos 2x\sin x - 2ca\cos 2x + 2bc\sin x)$
                                                  $ + ({a^2}{\sin ^2}2x - 2ab\sin 2x\cos x + {b^2}c{\text{o}}{{\text{s}}^2}x) \geqslant 0$
$ \Leftrightarrow {(a\cos 2x - b\sin x - c)^2} + {(a\sin 2x - b\cos x)^2} \geqslant 0$
Bất đẳng thức cuối cùng luôn luôn đúng nên ta có điều phải chứng minh.

Ví dụ 3:
Cho $\alpha ,\beta ,\gamma  \ne \frac{\pi }{2} + k\pi $ là ba góc thỏa ${\sin ^2}\alpha  + {\sin ^2}\beta  + {\sin ^2}\gamma  = 1$ . CMR:
${\left( {\frac{{\operatorname{t} {\text{an}}\alpha \tan \beta  + \tan \beta \tan \gamma  + \tan \gamma \tan \alpha }}{3}} \right)^2} \leqslant 1 - 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma $
Lời giải:
Ta có:   ${\sin ^2}\alpha  + {\sin ^2}\beta  + {\sin ^2}\gamma  = 1$
$ \Leftrightarrow c{\text{o}}{{\text{s}}^2}\alpha  + c{\text{o}}{{\text{s}}^2}\beta  + c{\text{o}}{{\text{s}}^2}\gamma  = 2$
$\begin{array}
   \Leftrightarrow \frac{1}{{1 + {{\tan }^2}\alpha }} + \frac{1}{{1 + {{\tan }^2}\beta }} + \frac{1}{{1 + {{\tan }^2}\gamma }} = 2  \\
   \Leftrightarrow {\tan ^2}\alpha {\tan ^2}\beta  + {\tan ^2}\beta {\tan ^2}\gamma  + {\tan ^2}\gamma {\tan ^2}\alpha  = 1 - 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma   \\
\end{array} $
Khi đó bất đẳng thức cần chứng minh tương đương với:
$\begin{array}
  {\left( {\frac{{\tan \alpha \tan \beta  + \tan \beta \tan \gamma  + \tan \gamma \tan \alpha }}{3}} \right)^2} \leqslant {\tan ^2}\alpha {\tan ^2}\beta  + {\tan ^2}\beta {\tan ^2}\gamma  = {\tan ^2}\gamma {\tan ^2}\alpha   \\
\Leftrightarrow {(\tan \alpha \tan \beta  - \tan \beta \tan \gamma )^2} + {(\tan \beta \tan \gamma  - \tan \gamma \tan \alpha )^2} \\
                           + {(\tan \gamma \tan \alpha  - \tan \alpha \tan \beta )^2} \geqslant 0  \\
\end{array} $
$ \Rightarrow $  đpcm.
Đẳng thức xảy ra  $ \Leftrightarrow \left\{ \begin{array}
  \tan \alpha \tan \beta  = \tan \beta \tan \gamma   \\
  \tan \beta \tan \gamma  = \tan \gamma \tan \alpha   \\
  \tan \gamma \tan \alpha  = \tan \alpha \tan \beta   \\
\end{array}  \right. \Leftrightarrow \tan \alpha  = \tan \beta  = \tan \gamma $   

Ví dụ 4:
CMR trong $\Delta ABC$ bất kì ta có:
             $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \geqslant 3\left( {\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
Lời giải:
Ta có:
$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$=$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
Đặt    $x = \cot \frac{A}{2}$ ; $y = \cot \frac{B}{2}$ ; $z = \cot \frac{C}{2}$
Khi đó: $\left\{ \begin{array}
  x,y,z > 0  \\
  x + y + z = xyz  \\
\end{array}  \right.$
Khi đó bất đẳng thức cần chứng minh tương với:
$\begin{array}
  x + y + z \geqslant 3\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)  \\
   \Leftrightarrow x + y + z \geqslant \frac{{3(xy + yz + zx)}}{{xyz}}  \\
   \Leftrightarrow {(x + y + z)^2} \geqslant 3(xy + yz + zx)  \\
   \Leftrightarrow {(x - y)^2} + {(y - z)^2} + {(z - x)^2} \geqslant 0  \\
\end{array} $
$ \Rightarrow $  đpcm.
Đẳng thức xảy ra:
$\begin{array}
   \Leftrightarrow \cot A = \cot B = \cot C  \\
   \Leftrightarrow A = B = C  \\
\end{array} $
$ \Leftrightarrow \Delta ABC$ đều.

Ví dụ 5:
CMR:   $\frac{1}{{3 + \operatorname{s} {\text{inx}}}} + \frac{1}{{3 - \operatorname{s} {\text{inx}}}} \leqslant \frac{2}{{2 + c{\text{os}}x}}$
Lời giải:
Vì $ - 1 \leqslant \operatorname{s} {\text{inx}} \leqslant 1$ và  $\cos x \geqslant  - 1$ nên:
$3 + \operatorname{s} {\text{inx}} > 0,3 - \operatorname{s} {\text{inx}} > 0$   và   $2 + \cos x > 0$
Khi đó bất đẳng thức tương đương:
$\begin{array}
  6(2 + \cos x) \leqslant 2(9 - {\sin ^2}x)  \\
   \Leftrightarrow 12 + 6\cos x \leqslant 18 - 2(1 - c{\text{o}}{{\text{s}}^2}x)  \\
   \Leftrightarrow 2c{\text{o}}{{\text{s}}^2}x - 6\cos x + 4 \geqslant 0  \\
   \Leftrightarrow (\cos x - 1)(\cos x - 2) \geqslant 0  \\
\end{array} $
Do $\cos x \leqslant 1$ nên bất đẳng thức cuối cùng luôn đúng $ \Rightarrow $ đpcm.

Ví dụ 6:
CMR: $\forall \frac{\pi }{3} \leqslant \alpha ,\beta  < \frac{\pi }{2}$ ta có:
             $\frac{2}{{c{\text{os}}\alpha  + c{\text{os}}\beta }} - 1 \leqslant \left( {\frac{1}{{c{\text{os}}\alpha }} - 1} \right)\left( {\frac{1}{{c{\text{os}}\beta }} - 1} \right)$
 Lời giải:
Từ $\forall \frac{\pi }{3} \leqslant \alpha ,\beta  < \frac{\pi }{2}$$ \Rightarrow 0 < c{\text{os}}\alpha ,c{\text{os}}\beta  \leqslant \frac{1}{2}$
Do đó  $\left\{ \begin{array}
  0 < c{\text{os}}\alpha  + c{\text{os}}\beta  \leqslant 1  \\
  0 < c{\text{os}}\alpha c{\text{os}}\beta  \leqslant \frac{1}{4}  \\
\end{array}  \right.$
Đặt $a = c{\text{os}}\alpha  + c{\text{os}}\beta ,b = c{\text{os}}\alpha c{\text{os}}\beta $
Bất đẳng thức đã cho trở thành:
$\begin{array}
  \frac{{2 - a}}{a} \leqslant \sqrt {\frac{{1 - a + b}}{b}}   \\
   \Leftrightarrow \left( {\frac{{2 - a}}{a}} \right) \leqslant \frac{{1 - a + b}}{b}  \\
   \Leftrightarrow {(2 - a)^2}b \leqslant {a^2}(1 - a + b)  \\
   \Leftrightarrow {a^3} - {a^2} - 4ab + 4b \leqslant 0  \\
   \Leftrightarrow (a - 1)({a^2} - 4b) \leqslant 0  \\
\end{array} $
Bất đẳng thức cuối đúng vì $a \leqslant 1$ và ${a^2} - 4b = {(c{\text{os}}\alpha  - c{\text{os}}\beta )^2} \geqslant 0$
$ \Rightarrow $ đpcm.

Ví dụ 7:
Cho các góc nhọn a và b thỏa ${\sin ^2}a + c{\text{o}}{{\text{s}}^2}b < 1$. CMR:
                   ${\sin ^2}a + {\sin ^2}b < {\sin ^2}(a + b)$
Lời giải:
Ta có : ${\sin ^2}a + {\sin ^2}\left( {\frac{\pi }{2} - a} \right) = 1$
Nên từ giả điều kiện ${\sin ^2}a + c{\text{o}}{{\text{s}}^2}b < 1$ suy ra:
$b < \frac{\pi }{2} - a,0 < a + b < \frac{\pi }{2}$
Mặt khác ta có:      
${\sin ^2}\left( {a + b} \right) = {\sin ^2}a{\cos ^2}b + {\sin ^2}b{\cos ^2}a + 2\sin a\sin b\cos a\cos b$
Nên thay thế $c{\text{o}}{{\text{s}}^2}b = 1 - {\sin ^2}b$ vào thì bất đẳng thức cần chứng minh tương đương với :
$2{\sin ^2}{\text{a}}{\sin ^2}b < 2\sin a\sin b\cos a\cos b$
$\begin{array}
   \Leftrightarrow \sin a\sin b < \cos a\cos b  \\
   \Leftrightarrow 0 < c{\text{os}}(a + b)  \\
\end{array} $
Bất đẳng thức sau cũng hiển nhiên đúng do $0 < a + b < \frac{\pi }{2} \Rightarrow $ đpcm.

Ví dụ 8:
Cho $\Delta ABC$ không vuông chứng minh rằng:
$3{\tan ^2}A{\tan ^2}B{\tan ^2}C - 5({\tan ^2}A + {\tan ^2}B + {\tan ^2}C) \\
                                   \leqslant 9 + {\tan ^2}A{\tan ^2}B + {\tan ^2}B{\tan ^2}C + {\tan ^2}C{\tan ^2}A$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với:
$4{\tan ^2}A{\tan ^2}B{\tan ^2}C - 4({\tan ^2}A + {\tan ^2}B + {\tan ^2}C) - 8\\
                          \leqslant (1 + {\tan ^2}A)(1 + {\tan ^2}B)(1 + {\tan ^2}C)$
$ \Leftrightarrow 4\left( {\frac{1}{{c{\text{o}}{{\text{s}}^2}A}} - 1} \right)\left( {\frac{1}{{c{\text{o}}{{\text{s}}^2}B}} - 1} \right)\left( {\frac{1}{{c{\text{o}}{{\text{s}}^2}C}} - 1} \right) - 4\left( {\frac{1}{{c{\text{o}}{{\text{s}}^2}A}} + \frac{1}{{c{\text{o}}{{\text{s}}^2}B}}\\                                             + \frac{1}{{c{\text{o}}{{\text{s}}^2}C}} - 3} \right) - 8 \leqslant \frac{1}{{c{\text{o}}{{\text{s}}^2}Ac{\text{o}}{{\text{s}}^2}Bc{\text{o}}{{\text{s}}^2}C}}$
$ \Leftrightarrow \frac{4}{{c{\text{o}}{{\text{s}}^2}Ac{\text{o}}{{\text{s}}^2}Bc{\text{o}}{{\text{s}}^2}C}} - \left( {\frac{1}{{c{\text{o}}{{\text{s}}^2}Ac{\text{o}}{{\text{s}}^2}B}} + \frac{1}{{c{\text{o}}{{\text{s}}^2}Bc{\text{o}}{{\text{s}}^2}C}} \\
                                 + \frac{1}{{c{\text{o}}{{\text{s}}^2}Cc{\text{o}}{{\text{s}}^2}A}}} \right) \leqslant \frac{1}{{c{\text{o}}{{\text{s}}^2}Ac{\text{o}}{{\text{s}}^2}Bc{\text{o}}{{\text{s}}^2}C}}$
$\begin{array}
   \Leftrightarrow c{\text{o}}{{\text{s}}^2}A + c{\text{o}}{{\text{s}}^2}B + c{\text{o}}{{\text{s}}^2}C \geqslant \frac{3}{4}  \\
   \Leftrightarrow \frac{{1 + c{\text{os}}2A}}{2} + \frac{{1 + c{\text{os}}2B}}{2} + c{\text{o}}{{\text{s}}^2}C \geqslant \frac{3}{4}  \\
   \Leftrightarrow 2(c{\text{os}}2A + c{\text{os}}2B) + 4c{\text{o}}{{\text{s}}^2}C + 1 \geqslant 0  \\
   \Leftrightarrow 2c{\text{os}}(A + B)c{\text{os}}(A - B) + 4c{\text{o}}{{\text{s}}^2}C + 1 \geqslant 0  \\
   \Leftrightarrow 4c{\text{o}}{{\text{s}}^2}C - 4\cos Cc{\text{os}}(A - B) + 1 \geqslant 0  \\
   \Leftrightarrow 2\cos C - c{\text{os}}{(A - B)^2} + {\sin ^2}(A - B) \geqslant 0  \\
\end{array} $
$ \Rightarrow $ đpcm.

Ví dụ 9:
Cho nửa đường tròn bán kính R, C là một điểm tùy ý trên nửa đường tròn. Trong hai hình quạt ngoại tiếp đường tròn, gọi M và N là hai tiếp điểm của hai đường tròn với đường kính của hai nửa đường tròn đã cho. CMR: MN  $ \geqslant 2R\left( {\sqrt 2  - 1} \right)$.
Lời giải:
Gọi O1;O2 là tâm của hai đường tròn. Đặt $\widehat {CON} = 2\alpha $(như vậy $0 < \alpha  < \frac{\pi }{2}$)
Và OO1 = ${R_1}$ ; ${\text{O}}{{\text{O}}_2} = {R_2}$
Ta có:
$\begin{array}
  \widehat {{O_2}ON} = \alpha   \\
  \widehat {{O_1}OM} = \frac{\pi }{2} - \alpha   \\
\end{array} $     
Vậy
$MN = MO + ON = {R_1}\cot \left( {\frac{\pi }{2} - \alpha } \right) + {R_2}\cot \alpha  = {R_1}\tan \alpha  + {R_2}\cot \alpha $
Trong tam giác vuông ${O_1}MO$ có:
$\begin{array}
  {R_1} = {O_1}{\text{Os}}in\left( {\frac{\pi }{2} - \alpha } \right) = (R - {R_1})c{\text{os}}\alpha   \\
  {R_1}(1 + c{\text{os}}\alpha ) = Rc{\text{os}}\alpha  \Rightarrow {R_1} = \frac{{R\sin \alpha }}{{1 + \sin \alpha }}  \\
\end{array} $              
Tương tự:
${R_2} = {\text{O}}{{\text{O}}_2}\sin \alpha  = (R - {R_2})\sin \alpha  \Rightarrow {R_2} = \frac{{R\sin \alpha }}{{1 + \sin \alpha }}$
Do đó:
$MN = \frac{{Rc{\text{os}}\alpha }}{{1 + c{\text{os}}\alpha }}.\frac{{\sin \alpha }}{{c{\text{os}}\alpha }} + \frac{{R\sin \alpha }}{{1 + \sin \alpha }}.\frac{{c{\text{os}}\alpha }}{{\sin \alpha }}$
       $\begin{array}
   = \frac{{R\sin \alpha }}{{1 + c{\text{os}}\alpha }} + \frac{{Rc{\text{os}}\alpha }}{{1 + \sin \alpha }}  \\
   = R\frac{{\sin \alpha  + c{\text{os}}\alpha  + 1}}{{(1 + \sin \alpha )(1 + c{\text{os}}\alpha )}}  \\
   = R\frac{{2c{\text{os}}\frac{\alpha }{2}\left( {\sin \frac{\alpha }{2} + c{\text{os}}\frac{\alpha }{2}} \right)}}{{{{\left( {\sin \frac{\alpha }{2} + c{\text{os}}\frac{\alpha }{2}} \right)}^2}.2c{\text{o}}{{\text{s}}^2}\frac{\alpha }{2}}}  \\
   = \frac{{2R}}{{\sin \alpha  + c{\text{os}}\alpha  + 1}}  \\
\end{array} $    
Mà $\sin \alpha  + c{\text{os}}\alpha  \leqslant \sqrt 2 \left( {\alpha  - \frac{\pi }{4}} \right) \leqslant \sqrt 2  \Rightarrow \frac{{2R}}{{\sqrt 2  + 1}} = 2R(\sqrt 2  - 1) \Rightarrow $đpcm.
Đẳng thức xáy ra $ \Leftrightarrow \alpha  = \frac{\pi }{4} \Leftrightarrow OC \bot MN$.

Thẻ

Lượt xem

3547
Chat chit và chém gió
  • Khờ iêm Khiêm: để lên kc thì chúng m tưởng dễ à 9/19/2017 9:18:37 AM
  • Khờ iêm Khiêm: trải qua bao nhiu thèn óc chó ms lên 9/19/2017 9:18:47 AM
  • Khờ iêm Khiêm: vàng 5 --> bk 5 500k 1 tuần happy OK ko bạn 9/19/2017 9:19:18 AM
  • Kirito: bố éo cần 9/19/2017 9:19:30 AM
  • Khờ iêm Khiêm: happy 9/19/2017 9:19:39 AM
  • Khờ iêm Khiêm: ờ quên 9/19/2017 9:19:45 AM
  • Khờ iêm Khiêm: cày thuê 9/19/2017 9:19:49 AM
  • Khờ iêm Khiêm: lên bạch kim đánh ko nổi 9/19/2017 9:19:56 AM
  • Khờ iêm Khiêm: nó chửi sml 9/19/2017 9:19:58 AM
  • Kirito: kinh thật dân cày thuê cơ đấy 9/19/2017 9:20:10 AM
  • Kirito: t sợ m r 9/19/2017 9:20:13 AM
  • Tuấn Quang: pro v ch 9/19/2017 9:20:27 AM
  • Khờ iêm Khiêm: ko cày thuê 9/19/2017 9:20:38 AM
  • Kirito: m giỏi thì cứ đưa acc Kc của m ra đây 9/19/2017 9:20:41 AM
  • Khờ iêm Khiêm: thì lấy tiền đâu chúng m chơi game 9/19/2017 9:20:44 AM
  • Khờ iêm Khiêm: happy 9/19/2017 9:20:48 AM
  • Khờ iêm Khiêm: OK 9/19/2017 9:20:50 AM
  • Khờ iêm Khiêm: ĐừngCấmTemmo 9/19/2017 9:21:08 AM
  • Kirito: nhìn tên là thấy trẩu rồi 9/19/2017 9:21:27 AM
  • Tuấn Quang: laughing 9/19/2017 9:21:34 AM
  • Kirito: Temmo là con éo nào thế 9/19/2017 9:21:43 AM
  • Khờ iêm Khiêm: happy 9/19/2017 9:21:47 AM
  • Kirito: Tướng ms à 9/19/2017 9:21:48 AM
  • Khờ iêm Khiêm: ĐừngCấm Teemo 9/19/2017 9:22:00 AM
  • Khờ iêm Khiêm: laughing 9/19/2017 9:22:09 AM
  • Khờ iêm Khiêm: solo thử kèo chặt cu bạn 9/19/2017 9:22:18 AM
  • Kirito: t k sợ mấy thèn trình Kc 9/19/2017 9:22:34 AM
  • Tuấn Quang: T acc garena của m là j 9/19/2017 9:22:54 AM
  • Kirito: t chỉ sợ mấy thèn dùng tool trình Kc thôi 9/19/2017 9:23:00 AM
  • Khờ iêm Khiêm: laughing 9/19/2017 9:23:05 AM
  • Khờ iêm Khiêm: sợ đeoó j tool 9/19/2017 9:23:09 AM
  • Khờ iêm Khiêm: vàng pk 9/19/2017 9:23:23 AM
  • Tuấn Quang: tự tin ghê 9/19/2017 9:23:30 AM
  • Khờ iêm Khiêm: kb vs nick : AFK.Hacker An0ny 9/19/2017 9:23:34 AM
  • Khờ iêm Khiêm: để t kéo cho lên bạch kim 9/19/2017 9:23:42 AM
  • Khờ iêm Khiêm: ko thì :Rafapro 9/19/2017 9:24:03 AM
  • Khờ iêm Khiêm: lanh 1234 9/19/2017 9:24:18 AM
  • Khờ iêm Khiêm: kb hết đi 9/19/2017 9:24:21 AM
  • Khờ iêm Khiêm: rảnh nick nào t kéo 9/19/2017 9:24:28 AM
  • Tuấn Quang: kéo đồng k thì kéo 9/19/2017 9:25:29 AM
  • Tuấn Quang: laughing 9/19/2017 9:25:32 AM
  • Khờ iêm Khiêm: happy 9/19/2017 9:25:34 AM
  • Khờ iêm Khiêm: đồng 3 ngày 9/19/2017 9:25:38 AM
  • Khờ iêm Khiêm: 200k 9/19/2017 9:25:41 AM
  • Khờ iêm Khiêm: ĐỒng V-> bạc 5 9/19/2017 9:25:54 AM
  • Khờ iêm Khiêm: combo đồng 5 --> vàng 1 tuần 600k 9/19/2017 9:26:08 AM
  • Khờ iêm Khiêm: ra giá t cày or kéo 9/19/2017 9:26:18 AM
  • Tuấn Quang: m tin thật ak 9/19/2017 9:26:22 AM
  • Tuấn Quang: laughing 9/19/2017 9:26:26 AM
  • Khờ iêm Khiêm: s chả đc 9/19/2017 9:26:29 AM
  • Khờ iêm Khiêm: nếu mà ko đưa tiền 9/19/2017 9:26:35 AM
  • Khờ iêm Khiêm: t sẽ dùng 2 trận tool 9/19/2017 9:26:50 AM
  • Khờ iêm Khiêm: r chụp màn hình đưa lên garena 9/19/2017 9:26:59 AM
  • Kirito: rolling_on_the_floor 9/19/2017 9:27:00 AM
  • Khờ iêm Khiêm: nếu ko đưa tiền happy 9/19/2017 9:27:02 AM
  • Tuấn Quang: laughing 9/19/2017 9:27:07 AM
  • Khờ iêm Khiêm: Ok rip nick big_grin 9/19/2017 9:27:17 AM
  • Tuấn Quang: laughing cơ mà t cx éo có nick nào hạng đồng 9/19/2017 9:27:53 AM
  • Khờ iêm Khiêm: thôi hx 9/19/2017 9:28:11 AM
  • Khờ iêm Khiêm: cm có chơi game thì rủ t đánh vài trận happy nhé 9/19/2017 9:28:26 AM
  • Khờ iêm Khiêm: xem trình :V 9/19/2017 9:28:35 AM
  • Tuấn Quang: laughing ok 9/19/2017 9:28:57 AM
  • Khờ iêm Khiêm: ĐưngCấmTeemo 9/19/2017 9:30:14 AM
  • Khờ iêm Khiêm: đây 9/19/2017 9:30:16 AM
  • Khờ iêm Khiêm: or đây : AFK.Hacker An0ny 9/19/2017 9:30:29 AM
  • Khờ iêm Khiêm: 2 nick thường chơi 9/19/2017 9:30:32 AM
  • Tuấn Quang: ok h nào làm trận 9/19/2017 9:32:13 AM
  • Khờ iêm Khiêm: chìu mai 5h15-30 9/19/2017 9:33:04 AM
  • Tuấn Quang: chiều mai chắc k dk 9/19/2017 9:33:13 AM
  • Tuấn Quang: cuối tuần đi 9/19/2017 9:33:24 AM
  • Tuấn Quang: ok k 9/19/2017 9:33:42 AM
  • Khờ iêm Khiêm: https://scontent.fdad3-1.fna.fbcdn.net/v/t34.0-12/21769874_346683249116381_1724543615_n.png?oh=86390541bb253da2cfd067296594b4ac&oe=59C446D8 9/19/2017 9:33:56 AM
  • Khờ iêm Khiêm: OK 9/19/2017 9:33:59 AM
  • Khờ iêm Khiêm: à mà quên 9/19/2017 9:34:29 AM
  • Khờ iêm Khiêm: cuối tuần là t6 nha 9/19/2017 9:34:36 AM
  • Tuấn Quang: ok 9/19/2017 9:34:45 AM
  • Tuấn Quang: 5h15 nhé 9/19/2017 9:34:57 AM
  • Khờ iêm Khiêm: t7 tuần này đến t4 tuần sau t đi nên ko chơi đc 9/19/2017 9:34:59 AM
  • Khờ iêm Khiêm: từ 9/19/2017 9:35:04 AM
  • Khờ iêm Khiêm: 5h30 9/19/2017 9:35:08 AM
  • Khờ iêm Khiêm: t hx thể dục về tắm chút chứ 9/19/2017 9:35:20 AM
  • Tuấn Quang: t cn ca 7-9h cơ 9/19/2017 9:35:39 AM
  • Tuấn Quang: sm để về cn đi học nx 9/19/2017 9:35:48 AM
  • Tuấn Quang: thôi 5h30 cx dk 9/19/2017 9:35:58 AM
  • Khờ iêm Khiêm:9/19/2017 9:36:06 AM
  • Khờ iêm Khiêm: tên nick để t đồng ý 9/19/2017 9:36:16 AM
  • Lionel Messi: còn ai k 9/19/2017 9:42:16 AM
  • Gió: ................................ 9/19/2017 6:52:40 PM
  • Gió: còn ai on k ạ/ 9/19/2017 6:53:13 PM
  • Nguyễn Thành Long: .' 9/19/2017 6:54:18 PM
  • Nguyễn Thành Long: . 9/19/2017 6:54:25 PM
  • Gió: hi anh 9/19/2017 6:54:26 PM
  • Nguyễn Thành Long: broken_heart 9/19/2017 6:54:28 PM
  • Gió: ủa? 9/19/2017 6:54:34 PM
  • Nguyễn Thành Long: tớ k quen cậu big_grin 9/19/2017 6:54:38 PM
  • Gió: thì thôi 9/19/2017 6:54:49 PM
  • Nguyễn Thành Long: quên :V 9/19/2017 6:54:55 PM
  • Gió: k quen h quen 9/19/2017 6:54:58 PM
  • Nguyễn Thành Long: k quên 9/19/2017 6:54:59 PM
  • Nguyễn Thành Long: laughing 9/19/2017 6:55:06 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • Lỗi
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • Thìn
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • †VPB†
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Lục Diệp Tử
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Boy Kiềuu"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • Hoàng Yến
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ⊰๖ۣۜNgốc๖ۣۜ ⊱
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • White
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Lành
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • -
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • sin^2 (B)
  • cụ nhỏ
  • Update
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Tuyết Linh
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tohka
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • trinh2005
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • Cửu Thiên Vũ
  • net.sonicz
  • Huyền Kute
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • cos^2(T)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • Kirito
  • Băng
  • Gin
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Gió
  • ♫ ♥ ♫
  • benganxd2509
  • nguyenconghoanganh02
  • ❦ Mưa ❦
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • sakuramiyukikawaii2006
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • namikaze
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam