HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II VÀ ĐẲNG CẤP BẬC II


I. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II

1. Định nghĩa:
Hệ phương trình đối xứng loại II là hệ chứa hai ẩn x, y mà khi ta thay đổi vai trò x, y cho nhau thì phương trình này trở thành phương trình kia của hệ.
*Chú ý: Nếu $({x_0};{y_0})$ là nghiệm của hệ thì$({y_0};{x_0})$ cũng là nghiệm của hệ.

2. Các dạng của hệ phương trình đối xứng loại II:
Dạng 1:
   

$\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {f(y,x) = 0}
\end{array}} \right.$
(đổi vị trí x và y cho nhau thì phương trình này trở thành phương trình kia).

Phương pháp giải chung:
Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.
Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ

Ví dụ1:
Giải hệ phương trình sau:
${\text{(I}})\left\{ {\begin{array}{*{20}{c}}
  {{x^2} - 2x = y} \\
  {{y^2} - 2y = x}
\end{array}} \right.$
Nhận xét: Nếu thay đồng thời x bởi y và y bởi x thì phương trình thứ nhất sẽ trở thành phương trình thứ hai và ngược lại.
Giải:
Trừ từng vế hai phương trình trong hệ, ta được
$\begin{array}
  {\text{     }}(x - y)(x + y) - 2(x - y) =  - (x - y)  \\
   \Leftrightarrow {\text{ }}(x - y)(x + y - 1) = {\text{ }}0  \\
   \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Do đó, hệ phương trình đã cho tương đương với:
${\text{(Ia}})\left\{ \begin{array}
  x - y = 0  \\
  {x^2} - 2x = y  \\
\end{array}  \right.$    hoặc ${\text{(Ib}})\left\{ \begin{array}
  x + y - 1 = 0  \\
  {x^2} - 2y = y  \\
\end{array}  \right.$
Giải hệ (Ia) ta được nghiệm (0;0), (3;3).
Giải hệ (IIa) ta được nghiệm:
$\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$
Vậy hệ phương trình có 4 nghiệm là
(0;0), (3;3), $\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$

Dạng 2:   

 $\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {g(x,y) = 0}
\end{array}} \right.$(trong đó chỉ có 1 phương trình đối xứng loại I)
Cách giải:

Đưa phương trình đối xứng về dạng tích, giải y theo x rồi thế vào phương trình còn lại.

Ví dụ 2:
Giải hệ phương trình:$\left\{ \begin{array}
  x - \frac{1}{x} = y - \frac{1}{y}{\text{   (1)}}  \\
  2{x^2} - xy - 1 = 0{\text{ (2)}}  \\
\end{array}  \right.$
Giải:
Điều kiện:    $x \ne 0;{\text{ y}} \ne {\text{0}}$. Khi đó:
$(1) \Leftrightarrow (x - y)\left( {1 + \frac{1}{{xy}}} \right) = 0{\text{    }} \Leftrightarrow \left[ \begin{array}
  x = y  \\
  y =  - \frac{1}{x}  \\
\end{array}  \right.$
Với x = y thì (2)$ \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x =  \pm 1$
Với $y =  - \frac{1}{x}$ thì (2) vô nghiệm
Vậy hệ phương trình có 2 nghiệm phân biệt (1;1), (–1;–1).

3. Một số bài tập về phương trình đối xứng loại II :
Ví dụ 3:

Giải hệ phương trình:$\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  {y^2} - 3y = 2x  \\
\end{array}  \right.$
Giải:
Trừ vế theo vế của hai phương trình, ta được:
$\begin{array}
  {\text{     }}{x^2} - {y^2} - 3x + 3y = 2y - 2x  \\
   \Leftrightarrow {\text{(x - y)(x + y - 1)}} = {\text{0}} \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình đã cho tương đương với:
${\text{(I}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x - y = 0  \\
\end{array}  \right.$   hoặc   ${\text{(II}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x + y - 1 = 0  \\
\end{array}  \right.$
Giải (I):
$(I) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2x  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x(x - 5) = 0  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow x = y = 0 \vee x = y = 5$
Giải (II):
$\begin{array}
  (II) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2(1 - x)  \\
  y = 1 - x  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2} - x - 2 = 0  \\
  y = x - 1  \\
\end{array}  \right.  \\
  {\text{     }} \Leftrightarrow \left\{ \begin{array}
  x =  - 1  \\
  y = 2  \\
\end{array}  \right.{\text{  }} \vee {\text{  }}\left\{ \begin{array}
  x = 2  \\
  y =  - 1  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình có bốn nghiệm
(0;0), (5;5), (–1;2), (2;–1).

Ví dụ 4:
Giải hệ phương trình $\left\{ \begin{array}
  \sqrt {2x + 3}  + \sqrt {4 - y}  = 4{\text{  }}(1)  \\
  \sqrt {2y + 3}  + \sqrt {4 - x}  = 4{\text{  }}(2)  \\
\end{array}  \right.$
Giải:
Điều kiện: $\left\{ \begin{array}
   - \frac{3}{2} \leqslant x \leqslant 4  \\
   - \frac{3}{2} \leqslant y \leqslant 4  \\
\end{array}  \right.$.
Lấy(1) trừ (2) ta được:
$\begin{array}
  \,\,\,\,\,\,\,\,\,\left( {\sqrt {2x + 3}  - \sqrt {2y + 3} } \right) + \left( {\sqrt {4 - y}  - \sqrt {4 - x} } \right) = 0  \\
   \Leftrightarrow {\text{ }}\frac{{(2x + 3) - (2y + 3)}}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{{(4 - y) - (4 - x)}}{{\sqrt {4 - y}  + \sqrt {4 - x} }} = 0  \\
   \Leftrightarrow (x - y)\left( {\frac{2}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{1}{{\sqrt {4 - y}  + \sqrt {4 - x} }}} \right) = 0 \Leftrightarrow x = y  \\
\end{array} $
Thay x = y vào (1), ta được:
$\sqrt {2x + 3}  + \sqrt {4 - x}  = 4 \Leftrightarrow x + 7 + 2\sqrt {(2x + 3)(4 - x)}  = 16$
$ \Leftrightarrow 2\sqrt { - 2{x^2} + 5x + 12}  = 9 - x \Leftrightarrow \left\{ \begin{array}
  9 - x \geqslant 0  \\
  9{x^2} - 38x + 33 = 0  \\
\end{array}  \right. \Leftrightarrow \left[ \begin{array}
  x = 3  \\
  x = \frac{{11}}{9}  \\
\end{array}  \right.\,\,$
Vậy hệ phương trình có 2 nghiệm phân biệt
$\left( {x;y} \right) = \left( {3;3} \right),\left( {\frac{{11}}{9};\frac{{11}}{9}} \right)$.

Ví dụ 5:
Giải hệ phương trình $\left\{ \begin{array}
  2y = \frac{{{y^2} + 1}}{{{x^2}}}  \\
  2x = \frac{{{x^2} + 1}}{{{y^2}}}  \\
\end{array}  \right.$
Giải:
Điều kiện: $x,y > 0$
Khi đó, hệ phương trình đã cho tương đương
$\left\{ \begin{array}
  2y{x^2} = {y^2} + 1{\text{  (1)}}  \\
  2x{y^2} = {x^2} + 1{\text{  (2)}}  \\
\end{array}  \right.$
Lấy (1) trừ (2) vế theo vế ta được:
        $\begin{array}
  {\text{     }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2xy(x - y) = y - x  \\
   \Leftrightarrow (x - y)\left( {2xy + x + y} \right) = 0\,\,\,{\text{mà }}\,\,\,\,\left( {2xy + x + y} \right) > 0  \\
   \Leftrightarrow x = y{\text{     (3)}}  \\
\end{array} $
Thay (3) vào (1) ta được:
$\begin{array}
  {\text{     }}2{x^3} = {x^2} + 1  \\
   \Leftrightarrow 2{x^3} - {x^2} - 1 = 0  \\
   \Leftrightarrow (x - 1)(\underbrace {2{x^2} + x + 1}_{ > 0\forall x}) = 0 \Leftrightarrow x = 1  \\
\end{array} $
Vậy hệ phương trình có nghiệm duy nhất
(x;y) = (1;1).

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải hệ phương trình:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  2x + y = \frac{3}{{{x^2}}}  \\
  2y + x = \frac{3}{{{y^2}}}  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. b \right)\left\{ \begin{array}
  xy + {x^2} = 1 + y  \\
  xy + {y^2} = 1 + x  \\
\end{array}  \right.  \\
  \left. c \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,d} \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm a để hệ sau có nghiệm duy nhất:
$\left\{ \begin{array}
  {x^2} + xy = a(y - 1)  \\
  {y^2} + xy = a(x - 1)  \\
\end{array}  \right.$

Bài 3:
Chứng minh rằng với $a \ne 0$thì phương trình sau có nghiệm duy nhất:
$\left\{ \begin{array}
  2{x^2} = y + \frac{{{a^2}}}{y}  \\
  2{y^2} = x + \frac{{{a^2}}}{x}  \\
\end{array}  \right.$

II. HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI
1. Định nghĩa:

Biểu thức f(x; y) gọi là phương trình đẳng cấp bậc 2 nếu
f(mx; my) = m2f(x; y)
Hệ phương trình đẳng cấp bậc hai có dạng:
$\left\{ \begin{array}
  f\left( {x,y} \right) = a  \\
  g\left( {x,y} \right) = b  \\
\end{array}  \right.$
Trong đó: f(x; y) và g(x; y) là phương trình đẳng cấp bậc 2;
với a và b là hằng số.

2. Cách giải:
Xét  x = 0 thay vào hệ kiểm tra.
Với x ≠ 0 ta đặt y = xt thay vào hệ ta có:
$\left\{ \begin{array}
  f\left( {x,xt} \right) = a  \\
  g\left( {x,xt} \right) = b  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}f\left( {1,t} \right) = a  \\
  {x^2}g\left( {1,t} \right) = b  \\
\end{array}  \right.$
Sau đó, chia 2 vế của 2 phương trình với nhau ta được:
$f\left( {1,t} \right) = \frac{a}{b}g\left( {1,t} \right)\,\,\,\,\,\,\,\,\,\left( * \right)$
Giải phương trình (*) ta tìm được t.
Thế t vào hệ ta tìm được (x; y).

3. Các ví dụ:
Ví dụ 1:

Giải hệ phương trình sau: $\left\{ \begin{array}
  2{x^2} + {y^2} + 3xy = 12  \\
  2{\left( {x + y} \right)^2} - {y^2} = 14  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\left( 1 \right)$
Giải.
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x ≠ 0 ta đặt y = xt. Khi đó hệ phương trình trở thành:
Khi đó (2) $ \Leftrightarrow {t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \begin{array}
  t = 1  \\
  t = 2  \\
\end{array}  \right.\,\,$(thỏa)
Khi t = 1 thế vào hệ ta được (x; y) = $\left( { \pm \sqrt 2 ;\,\, \pm \sqrt 2 } \right)$
Khi t = 2 thế vào hệ ta được (x; y) = (1; 2), (–1; –2)
Vậy nghiệm của hệ là:(x; y) = $\left( { \pm \sqrt 2 ; \pm \sqrt 2 } \right)$, (1; 2), (–1; –2)

Ví dụ 2:
Tìm m để hệ phương trình sau có nghiệm:
$\left\{ \begin{array}
  {x^2} + xym + {y^2} = m  \\
  {x^2} + \left( {m - 1} \right)xy + m{y^2} = m  \\
\end{array}  \right.$
Giải:
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x  0 ta đặt y = xt. Thế vào hệ phương trình ta được
$\begin{array}
  \,\,\,\,\,\,\left\{ \begin{array}
  {x^2} + {x^2}tm + {x^2}{t^2} = m  \\
  {x^2} + \left( {m - 1} \right){x^2}t + {x^2}{t^2}m = m  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}\left( {{t^2} + tm + 1} \right) = m  \\
  {x^2}\left( {{t^2}m + tm - t + 1} \right) = m  \\
\end{array}  \right.  \\
   \Rightarrow \frac{{{t^2} + tm + 1}}{{{t^2}m + tm +  - t + 1}} = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left( {1 - m} \right){t^2} + t = 0 \Leftrightarrow \left[ \begin{array}
  t = 0  \\
  \left( {1 - m} \right)t = 1  \\
\end{array}  \right.  \\
\end{array} $
Khi t = 0 thì         
Khi (1–m)t = 1    $ \Rightarrow \left\{ \begin{array}
  y = \frac{x}{{m - 1}}  \\
  {y^2} = \frac{m}{{2{m^2} - 3m + 2}}  \\
\end{array}  \right.\,\,\,\,\,\,\left( * \right)$
Vì $2{m^2} - 3m + 2 = 2{\left( {m - \frac{3}{4}} \right)^2} + \frac{7}{8} > 0$ nên (*) có nghĩa$ \Leftrightarrow m \geqslant 1$
 Vậy với $m \geqslant 1$ thì hệ phương trình trên có nghiệm.

Ví dụ 3:
Cho hệ phương trình sau: $\left\{ \begin{array}
  {x^2} - 4xy + {y^2} = m  \\
  {y^2} - 3xy = 4  \\
\end{array}  \right.$
Chứng minh hệ phương trình luôn luôn có nghiệm $\forall m$.
Giải:
Khi x = 0 không là nghiệm của hệ phương trình.
Với x   0 ta đặt y = xt. Khi đó hệ phương trình trở thành
 
Khi đó $\left( * \right) \Leftrightarrow \left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,\,\left( {**} \right)$
Với m = 4 thì (**) có dạng $ - 4t + 4 = 0 \Leftrightarrow t = 1$ (thoả)
Với m   4 thì (**) có dạng:
$\left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,$
Với $\Delta  = 9{m^2} - 80m + 192 = {\left( {3m - \frac{{40}}{3}} \right)^2} + \frac{{128}}{9} > 0$
Vậy hệ phương trình luôn luôn có nghiệm$\forall m$.

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải các hệ phương trình sau:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17  \\
\end{array}  \right.  \\
    \\
  \left. b \right)\left\{ \begin{array}
  {x^2} + {y^2} = 5 - 2xy  \\
  y\left( {x + y} \right) = 10  \\
\end{array}  \right.  \\
    \\
  \left. c \right)\left\{ \begin{array}
  2{x^2}{y^2} + {x^2} + 2x = 2  \\
  2{x^2}y - {x^2}{y^2} + 2xy = 1  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  {x^2} + {y^2} + xy + 2y + x = 2  \\
  2{x^2} - {y^2} - 2y - 2 = 0  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  2x + 3y = {x^2} + 3xy + {y^2}  \\
  {x^2} + 2{y^2} = x + 2y  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm giá trị của m để phương trình có nghiệm:
$\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17 + m  \\
\end{array}  \right.$

cho xin nick zing nhe –  hattorihejji0110 17-09-13 09:29 PM
minh muon ket ban vs cac pro toan hoc . lam quen o nick zing : linhhonbidanhtrai_99 nhe (nho ghi ro loi moi ket ban la thanh vien cua ''hoc tai nha'' nhe)chung ta se chia se kinh nghiem hoc tap cho nhau nhe :(( – –  hattorihejji0110 17-09-13 09:29 PM
Chat chit và chém gió
  • hờ hờ: c chưa bit mặt trâm 5/26/2016 1:14:06 PM
  • ๖ۣۜJinღ๖ۣۜKaido: rolling_on_the_floor 5/26/2016 1:14:16 PM
  • ๖ۣۜJinღ๖ۣۜKaido: sao ca tìm dc 5/26/2016 1:14:19 PM
  • Bé's Ngốc'ss: e là cái đứa xấu nhất trong đó 5/26/2016 1:14:31 PM
  • hờ hờ: vào xem cmt ảnh e kìa pig 5/26/2016 1:15:29 PM
  • Bé's Ngốc'ss: c Linh 5/26/2016 1:16:04 PM
  • Bé's Ngốc'ss: e cx chưa bít mặt c 5/26/2016 1:16:11 PM
  • ♪" Insidious"♪: yawn 5/26/2016 1:18:00 PM
  • Bé's Ngốc'ss: hi Boss 5/26/2016 1:18:20 PM
  • ♪" Insidious"♪: 2 5/26/2016 1:18:32 PM
  • Bé's Ngốc'ss: s cái tên kì z 5/26/2016 1:18:41 PM
  • ♪" Insidious"♪: thôi ngủ tiếp đây 5/26/2016 1:18:45 PM
  • ♪" Insidious"♪: laughing 5/26/2016 1:18:52 PM
  • Bé's Ngốc'ss: ukm 5/26/2016 1:19:10 PM
  • Bé's Ngốc'ss: ngủ đi 5/26/2016 1:19:13 PM
  • Bé's Ngốc'ss: rolling_on_the_floor 5/26/2016 1:19:18 PM
  • ♪" Insidious"♪: nhìn thấy mặt thak jin 3 lần r mà lần này nhìn rõ nhất 5/26/2016 1:19:52 PM
  • ๖ۣۜJinღ๖ۣۜKaido: laughing 5/26/2016 1:20:12 PM
  • ๖ۣۜJinღ๖ۣۜKaido: uk 5/26/2016 1:20:14 PM
  • ๖ۣۜJinღ๖ۣۜKaido: tại lần trc chụp trong tối 5/26/2016 1:20:20 PM
  • ๖ۣۜJinღ๖ۣۜKaido: laughing 5/26/2016 1:20:22 PM
  • ๖ۣۜJinღ๖ۣۜKaido: thôi pp 5/26/2016 1:20:24 PM
  • ๖ۣۜJinღ๖ۣۜKaido: Jin off 5/26/2016 1:20:27 PM
  • ♪" Insidious"♪: pp 5/26/2016 1:20:31 PM
  • Bé's Ngốc'ss: jin ca 5/26/2016 1:20:32 PM
  • ♪" Insidious"♪: wave 5/26/2016 1:20:35 PM
  • Bé's Ngốc'ss: ca có ảnh c Linh ko 5/26/2016 1:20:40 PM
  • hờ hờ: cả ko có đâu 5/26/2016 1:21:43 PM
  • hờ hờ: cả e ko có đâu 5/26/2016 1:21:52 PM
  • ♪" Insidious"♪: of r 5/26/2016 1:21:55 PM
  • Bé's Ngốc'ss: c cho e xem ảnh c đi 5/26/2016 1:22:10 PM
  • hờ hờ: ai trong 5/26/2016 1:22:12 PM
  • hờ hờ: mất công lắm 5/26/2016 1:22:24 PM
  • hờ hờ: thôi khỏi đi e 5/26/2016 1:22:29 PM
  • Bé's Ngốc'ss: đi mà c 5/26/2016 1:22:36 PM
  • Bé's Ngốc'ss: cho e xem 5/26/2016 1:22:40 PM
  • ♪" Insidious"♪: at_wits_end hyn nhiều linh quá 5/26/2016 1:22:44 PM
  • hờ hờ: ai kia thế trâm 5/26/2016 1:22:56 PM
  • ♪" Insidious"♪: phbbbbt 5/26/2016 1:23:02 PM
  • ♪" Insidious"♪: mem ms 5/26/2016 1:23:07 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: Thảo Linh big_grin 5/26/2016 1:23:10 PM
  • hờ hờ: winking 5/26/2016 1:23:11 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: kệ tên đó đi laughing 5/26/2016 1:23:17 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: khỏi cần care nhóc đó laughing 5/26/2016 1:23:26 PM
  • ♪" Insidious"♪: sida đái đường ms onl à 5/26/2016 1:23:29 PM
  • Bé's Ngốc'ss: đó là tên boss 5/26/2016 1:23:35 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: ta onl lâu r con nít ạ laughing 5/26/2016 1:23:42 PM
  • ♪" Insidious"♪: laughing đồ đái đường 5/26/2016 1:23:43 PM
  • Bé's Ngốc'ss: hắn tên là Dương Quang Linh 5/26/2016 1:23:50 PM
  • Bé's Ngốc'ss: hi c Linh 5/26/2016 1:23:54 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: chẳng quá thấy mi lên ngứa mắt thôi laughing 5/26/2016 1:23:59 PM
  • ♪" Insidious"♪: có cần khai hết họ tên ko 5/26/2016 1:24:04 PM
  • ♪" Insidious"♪: laughing 5/26/2016 1:24:13 PM
  • Bé's Ngốc'ss:5/26/2016 1:24:14 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: hi Trâm laughing 5/26/2016 1:24:19 PM
  • ♪" Insidious"♪: thôi sida ngủ đây 5/26/2016 1:24:22 PM
  • Bé's Ngốc'ss: khai hết cho đỡ nhầm 5/26/2016 1:24:26 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: cút đi nhé laughing 5/26/2016 1:24:34 PM
  • Bé's Ngốc'ss: tự nhận mik sida kìa 5/26/2016 1:24:37 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: rolling_on_the_floor 5/26/2016 1:24:43 PM
  • hờ hờ: kệ đi 5/26/2016 1:24:46 PM
  • Bé's Ngốc'ss: laughing 5/26/2016 1:24:48 PM
  • hờ hờ: thôi...pye pye 5/26/2016 1:24:56 PM
  • ♪" Insidious"♪: t ns sida là dieulinh 5/26/2016 1:24:56 PM
  • ♪" Insidious"♪: wave 5/26/2016 1:24:59 PM
  • Bé's Ngốc'ss: c thảo linh 5/26/2016 1:24:59 PM
  • hờ hờ: ukm 5/26/2016 1:25:05 PM
  • Bé's Ngốc'ss: cho e xem ảnh c 5/26/2016 1:25:05 PM
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102: cút đi đồ con nít phbbbbt 5/26/2016 1:25:18 PM
  • hờ hờ: shame_on_you 5/26/2016 1:25:20 PM
  • Bé's Ngốc'ss: đi mà c 5/26/2016 1:25:33 PM
  • Bé's Ngốc'ss: c xinh gái s fai giấu ảnh chứ 5/26/2016 1:25:49 PM
  • hờ hờ: straight_face 5/26/2016 1:25:56 PM
  • Bé's Ngốc'ss: winking 5/26/2016 1:26:09 PM
  • Bé's Ngốc'ss: c cho e xem đi mà 5/26/2016 1:26:16 PM
  • hờ hờ: xinh ms giấu ko ng.ta thấy mất mà 5/26/2016 1:26:17 PM
  • hờ hờ: hà hà 5/26/2016 1:26:19 PM
  • hờ hờ: wave 5/26/2016 1:26:26 PM
  • hờ hờ: wave 5/26/2016 1:26:28 PM
  • hờ hờ: wave 5/26/2016 1:26:31 PM
  • hờ hờ: wave 5/26/2016 1:26:36 PM
  • hờ hờ: wave 5/26/2016 1:26:38 PM
  • hờ hờ: wave 5/26/2016 1:26:40 PM
  • hờ hờ: wave 5/26/2016 1:26:46 PM
  • hờ hờ: wave 5/26/2016 1:26:48 PM
  • hờ hờ: wave 5/26/2016 1:26:50 PM
  • Bé's Ngốc'ss:5/26/2016 1:26:52 PM
  • hờ hờ: wave 5/26/2016 1:26:54 PM
  • hờ hờ: wave 5/26/2016 1:26:58 PM
  • Bé's Ngốc'ss: bó tay c lun 5/26/2016 1:27:01 PM
  • hờ hờ: bó tay chị làm gì 5/26/2016 1:27:17 PM
  • hờ hờ: có lq đâu 5/26/2016 1:27:23 PM
  • hờ hờ: thôi...c đi ngủ đây 5/26/2016 1:27:29 PM
  • hờ hờ: wave 5/26/2016 1:27:33 PM
  • Bé's Ngốc'ss: vâng 5/26/2016 1:28:18 PM
  • Bé's Ngốc'ss: pp c nhé 5/26/2016 1:28:22 PM
  • Bé's Ngốc'ss: c nn 5/26/2016 1:28:25 PM
  • Bé's Ngốc'ss: wave 5/26/2016 1:28:29 PM
  • hờ hờ: uk,e....p e 5/26/2016 1:28:35 PM
  • Bé's Ngốc'ss: winking 5/26/2016 1:29:17 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ HTN
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ღ๖ۣۜKhờღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • .
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ***
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • ★★.P.I.N.O.★★
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ღNTLHღ ๖ۣۜMagickbtsヅ
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Lăng Lăng
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • Trần Hoàng Nam
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜTriệu ๖ۣۜTử ๖ۣۜLong
  • Nganiuyixing
  • anhvt93
  • Tôi là ai ???
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Chiuu
  • meoconxichum103
  • phamduong1234
  • MiMi
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • ╭⌒╮☆♥Kem♥☆╭⌒╮
  • lephamhieu
  • ♥≧◉◡◉≦ ๖ۣۜTùng ๖ۣۜSầu ๑۩۞۩๑♥
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • ♎ ๖ۣۜPhạm ๖ۣۜLý ♎
  • duongrooneyhd1985
  • Ryo Chế
  • vũ phong
  • thanhhuyen218969
  • dtknganhp24
  • ﺸ♠♣Cún♥♦ﺸ
  • Time to move
  • tclsptk25
  • Vincent Camryn
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • Chụy Mưn Xưn Trai ^^
  • KIỀU TRINH
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Kẻ lãng quên quá khứ
  • chinh923
  • phanthilanphuong2011
  • Thùy Trang
  • maivyy
  • mitvodich
  • (♥).•*´¨•♥€ông๖ۣۜMinh♥•*´¨`(♥)
  • quocchanlqd
  • Vim
  • gaquay
  • thotrang
  • nguyenyen1510919311
  • buatruavuive
  • trannguyenhoaithu2015
  • caigihu123
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • kientrung9a
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • QuỲnh'sS MuUn'sS
  • milodatnguyen
  • xươngrồngtrênsamạc
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Hoàng Yến
  • Kẻ lãng quên
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Ngọc Ánh
  • dahoala
  • nhungevil
  • ๖ۣۜNhung ๖ۣۜAngles
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Hoàng
  • Kiên
  • Lionel Messi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • [ ___Judal ___]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • Bé's Ngốc'ss
  • 113
  • Ngọc
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ♪" Insidious"♪
  • d.nguyn2603
  • chauchauchau98
  • ≧^◡^≦ Diệu Lưn Diệu Lưn 1102
  • cobannhungkhongdongian
  • vanduongts
  • Linh bò
  • tasfuskau
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • cabvcahp
  • chibietngayhomnay
  • vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • amthambenem661
  • ♥♥ Quỳnh'x HOa'ss ♥♥
  • thanhduy.zad
  • thaongoc9a2001
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • trungpro
  • mxuyen7
  • W2S
  • Šamori
  • Sao Hỏa
  • chungphi18vn
  • Diệu Diệu Linh Linh 1102
  • dautay151998