HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II VÀ ĐẲNG CẤP BẬC II


I. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II

1. Định nghĩa:
Hệ phương trình đối xứng loại II là hệ chứa hai ẩn x, y mà khi ta thay đổi vai trò x, y cho nhau thì phương trình này trở thành phương trình kia của hệ.
*Chú ý: Nếu $({x_0};{y_0})$ là nghiệm của hệ thì$({y_0};{x_0})$ cũng là nghiệm của hệ.

2. Các dạng của hệ phương trình đối xứng loại II:
Dạng 1:
   

$\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {f(y,x) = 0}
\end{array}} \right.$
(đổi vị trí x và y cho nhau thì phương trình này trở thành phương trình kia).

Phương pháp giải chung:
Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.
Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ

Ví dụ1:
Giải hệ phương trình sau:
${\text{(I}})\left\{ {\begin{array}{*{20}{c}}
  {{x^2} - 2x = y} \\
  {{y^2} - 2y = x}
\end{array}} \right.$
Nhận xét: Nếu thay đồng thời x bởi y và y bởi x thì phương trình thứ nhất sẽ trở thành phương trình thứ hai và ngược lại.
Giải:
Trừ từng vế hai phương trình trong hệ, ta được
$\begin{array}
  {\text{     }}(x - y)(x + y) - 2(x - y) =  - (x - y)  \\
   \Leftrightarrow {\text{ }}(x - y)(x + y - 1) = {\text{ }}0  \\
   \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Do đó, hệ phương trình đã cho tương đương với:
${\text{(Ia}})\left\{ \begin{array}
  x - y = 0  \\
  {x^2} - 2x = y  \\
\end{array}  \right.$    hoặc ${\text{(Ib}})\left\{ \begin{array}
  x + y - 1 = 0  \\
  {x^2} - 2y = y  \\
\end{array}  \right.$
Giải hệ (Ia) ta được nghiệm (0;0), (3;3).
Giải hệ (IIa) ta được nghiệm:
$\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$
Vậy hệ phương trình có 4 nghiệm là
(0;0), (3;3), $\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$

Dạng 2:   

 $\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {g(x,y) = 0}
\end{array}} \right.$(trong đó chỉ có 1 phương trình đối xứng loại I)
Cách giải:

Đưa phương trình đối xứng về dạng tích, giải y theo x rồi thế vào phương trình còn lại.

Ví dụ 2:
Giải hệ phương trình:$\left\{ \begin{array}
  x - \frac{1}{x} = y - \frac{1}{y}{\text{   (1)}}  \\
  2{x^2} - xy - 1 = 0{\text{ (2)}}  \\
\end{array}  \right.$
Giải:
Điều kiện:    $x \ne 0;{\text{ y}} \ne {\text{0}}$. Khi đó:
$(1) \Leftrightarrow (x - y)\left( {1 + \frac{1}{{xy}}} \right) = 0{\text{    }} \Leftrightarrow \left[ \begin{array}
  x = y  \\
  y =  - \frac{1}{x}  \\
\end{array}  \right.$
Với x = y thì (2)$ \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x =  \pm 1$
Với $y =  - \frac{1}{x}$ thì (2) vô nghiệm
Vậy hệ phương trình có 2 nghiệm phân biệt (1;1), (–1;–1).

3. Một số bài tập về phương trình đối xứng loại II :
Ví dụ 3:

Giải hệ phương trình:$\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  {y^2} - 3y = 2x  \\
\end{array}  \right.$
Giải:
Trừ vế theo vế của hai phương trình, ta được:
$\begin{array}
  {\text{     }}{x^2} - {y^2} - 3x + 3y = 2y - 2x  \\
   \Leftrightarrow {\text{(x - y)(x + y - 1)}} = {\text{0}} \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình đã cho tương đương với:
${\text{(I}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x - y = 0  \\
\end{array}  \right.$   hoặc   ${\text{(II}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x + y - 1 = 0  \\
\end{array}  \right.$
Giải (I):
$(I) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2x  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x(x - 5) = 0  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow x = y = 0 \vee x = y = 5$
Giải (II):
$\begin{array}
  (II) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2(1 - x)  \\
  y = 1 - x  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2} - x - 2 = 0  \\
  y = x - 1  \\
\end{array}  \right.  \\
  {\text{     }} \Leftrightarrow \left\{ \begin{array}
  x =  - 1  \\
  y = 2  \\
\end{array}  \right.{\text{  }} \vee {\text{  }}\left\{ \begin{array}
  x = 2  \\
  y =  - 1  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình có bốn nghiệm
(0;0), (5;5), (–1;2), (2;–1).

Ví dụ 4:
Giải hệ phương trình $\left\{ \begin{array}
  \sqrt {2x + 3}  + \sqrt {4 - y}  = 4{\text{  }}(1)  \\
  \sqrt {2y + 3}  + \sqrt {4 - x}  = 4{\text{  }}(2)  \\
\end{array}  \right.$
Giải:
Điều kiện: $\left\{ \begin{array}
   - \frac{3}{2} \leqslant x \leqslant 4  \\
   - \frac{3}{2} \leqslant y \leqslant 4  \\
\end{array}  \right.$.
Lấy(1) trừ (2) ta được:
$\begin{array}
  \,\,\,\,\,\,\,\,\,\left( {\sqrt {2x + 3}  - \sqrt {2y + 3} } \right) + \left( {\sqrt {4 - y}  - \sqrt {4 - x} } \right) = 0  \\
   \Leftrightarrow {\text{ }}\frac{{(2x + 3) - (2y + 3)}}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{{(4 - y) - (4 - x)}}{{\sqrt {4 - y}  + \sqrt {4 - x} }} = 0  \\
   \Leftrightarrow (x - y)\left( {\frac{2}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{1}{{\sqrt {4 - y}  + \sqrt {4 - x} }}} \right) = 0 \Leftrightarrow x = y  \\
\end{array} $
Thay x = y vào (1), ta được:
$\sqrt {2x + 3}  + \sqrt {4 - x}  = 4 \Leftrightarrow x + 7 + 2\sqrt {(2x + 3)(4 - x)}  = 16$
$ \Leftrightarrow 2\sqrt { - 2{x^2} + 5x + 12}  = 9 - x \Leftrightarrow \left\{ \begin{array}
  9 - x \geqslant 0  \\
  9{x^2} - 38x + 33 = 0  \\
\end{array}  \right. \Leftrightarrow \left[ \begin{array}
  x = 3  \\
  x = \frac{{11}}{9}  \\
\end{array}  \right.\,\,$
Vậy hệ phương trình có 2 nghiệm phân biệt
$\left( {x;y} \right) = \left( {3;3} \right),\left( {\frac{{11}}{9};\frac{{11}}{9}} \right)$.

Ví dụ 5:
Giải hệ phương trình $\left\{ \begin{array}
  2y = \frac{{{y^2} + 1}}{{{x^2}}}  \\
  2x = \frac{{{x^2} + 1}}{{{y^2}}}  \\
\end{array}  \right.$
Giải:
Điều kiện: $x,y > 0$
Khi đó, hệ phương trình đã cho tương đương
$\left\{ \begin{array}
  2y{x^2} = {y^2} + 1{\text{  (1)}}  \\
  2x{y^2} = {x^2} + 1{\text{  (2)}}  \\
\end{array}  \right.$
Lấy (1) trừ (2) vế theo vế ta được:
        $\begin{array}
  {\text{     }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2xy(x - y) = y - x  \\
   \Leftrightarrow (x - y)\left( {2xy + x + y} \right) = 0\,\,\,{\text{mà }}\,\,\,\,\left( {2xy + x + y} \right) > 0  \\
   \Leftrightarrow x = y{\text{     (3)}}  \\
\end{array} $
Thay (3) vào (1) ta được:
$\begin{array}
  {\text{     }}2{x^3} = {x^2} + 1  \\
   \Leftrightarrow 2{x^3} - {x^2} - 1 = 0  \\
   \Leftrightarrow (x - 1)(\underbrace {2{x^2} + x + 1}_{ > 0\forall x}) = 0 \Leftrightarrow x = 1  \\
\end{array} $
Vậy hệ phương trình có nghiệm duy nhất
(x;y) = (1;1).

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải hệ phương trình:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  2x + y = \frac{3}{{{x^2}}}  \\
  2y + x = \frac{3}{{{y^2}}}  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. b \right)\left\{ \begin{array}
  xy + {x^2} = 1 + y  \\
  xy + {y^2} = 1 + x  \\
\end{array}  \right.  \\
  \left. c \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,d} \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm a để hệ sau có nghiệm duy nhất:
$\left\{ \begin{array}
  {x^2} + xy = a(y - 1)  \\
  {y^2} + xy = a(x - 1)  \\
\end{array}  \right.$

Bài 3:
Chứng minh rằng với $a \ne 0$thì phương trình sau có nghiệm duy nhất:
$\left\{ \begin{array}
  2{x^2} = y + \frac{{{a^2}}}{y}  \\
  2{y^2} = x + \frac{{{a^2}}}{x}  \\
\end{array}  \right.$

II. HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI
1. Định nghĩa:

Biểu thức f(x; y) gọi là phương trình đẳng cấp bậc 2 nếu
f(mx; my) = m2f(x; y)
Hệ phương trình đẳng cấp bậc hai có dạng:
$\left\{ \begin{array}
  f\left( {x,y} \right) = a  \\
  g\left( {x,y} \right) = b  \\
\end{array}  \right.$
Trong đó: f(x; y) và g(x; y) là phương trình đẳng cấp bậc 2;
với a và b là hằng số.

2. Cách giải:
Xét  x = 0 thay vào hệ kiểm tra.
Với x ≠ 0 ta đặt y = xt thay vào hệ ta có:
$\left\{ \begin{array}
  f\left( {x,xt} \right) = a  \\
  g\left( {x,xt} \right) = b  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}f\left( {1,t} \right) = a  \\
  {x^2}g\left( {1,t} \right) = b  \\
\end{array}  \right.$
Sau đó, chia 2 vế của 2 phương trình với nhau ta được:
$f\left( {1,t} \right) = \frac{a}{b}g\left( {1,t} \right)\,\,\,\,\,\,\,\,\,\left( * \right)$
Giải phương trình (*) ta tìm được t.
Thế t vào hệ ta tìm được (x; y).

3. Các ví dụ:
Ví dụ 1:

Giải hệ phương trình sau: $\left\{ \begin{array}
  2{x^2} + {y^2} + 3xy = 12  \\
  2{\left( {x + y} \right)^2} - {y^2} = 14  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\left( 1 \right)$
Giải.
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x ≠ 0 ta đặt y = xt. Khi đó hệ phương trình trở thành:
Khi đó (2) $ \Leftrightarrow {t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \begin{array}
  t = 1  \\
  t = 2  \\
\end{array}  \right.\,\,$(thỏa)
Khi t = 1 thế vào hệ ta được (x; y) = $\left( { \pm \sqrt 2 ;\,\, \pm \sqrt 2 } \right)$
Khi t = 2 thế vào hệ ta được (x; y) = (1; 2), (–1; –2)
Vậy nghiệm của hệ là:(x; y) = $\left( { \pm \sqrt 2 ; \pm \sqrt 2 } \right)$, (1; 2), (–1; –2)

Ví dụ 2:
Tìm m để hệ phương trình sau có nghiệm:
$\left\{ \begin{array}
  {x^2} + xym + {y^2} = m  \\
  {x^2} + \left( {m - 1} \right)xy + m{y^2} = m  \\
\end{array}  \right.$
Giải:
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x  0 ta đặt y = xt. Thế vào hệ phương trình ta được
$\begin{array}
  \,\,\,\,\,\,\left\{ \begin{array}
  {x^2} + {x^2}tm + {x^2}{t^2} = m  \\
  {x^2} + \left( {m - 1} \right){x^2}t + {x^2}{t^2}m = m  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}\left( {{t^2} + tm + 1} \right) = m  \\
  {x^2}\left( {{t^2}m + tm - t + 1} \right) = m  \\
\end{array}  \right.  \\
   \Rightarrow \frac{{{t^2} + tm + 1}}{{{t^2}m + tm +  - t + 1}} = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left( {1 - m} \right){t^2} + t = 0 \Leftrightarrow \left[ \begin{array}
  t = 0  \\
  \left( {1 - m} \right)t = 1  \\
\end{array}  \right.  \\
\end{array} $
Khi t = 0 thì         
Khi (1–m)t = 1    $ \Rightarrow \left\{ \begin{array}
  y = \frac{x}{{m - 1}}  \\
  {y^2} = \frac{m}{{2{m^2} - 3m + 2}}  \\
\end{array}  \right.\,\,\,\,\,\,\left( * \right)$
Vì $2{m^2} - 3m + 2 = 2{\left( {m - \frac{3}{4}} \right)^2} + \frac{7}{8} > 0$ nên (*) có nghĩa$ \Leftrightarrow m \geqslant 1$
 Vậy với $m \geqslant 1$ thì hệ phương trình trên có nghiệm.

Ví dụ 3:
Cho hệ phương trình sau: $\left\{ \begin{array}
  {x^2} - 4xy + {y^2} = m  \\
  {y^2} - 3xy = 4  \\
\end{array}  \right.$
Chứng minh hệ phương trình luôn luôn có nghiệm $\forall m$.
Giải:
Khi x = 0 không là nghiệm của hệ phương trình.
Với x   0 ta đặt y = xt. Khi đó hệ phương trình trở thành
 
Khi đó $\left( * \right) \Leftrightarrow \left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,\,\left( {**} \right)$
Với m = 4 thì (**) có dạng $ - 4t + 4 = 0 \Leftrightarrow t = 1$ (thoả)
Với m   4 thì (**) có dạng:
$\left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,$
Với $\Delta  = 9{m^2} - 80m + 192 = {\left( {3m - \frac{{40}}{3}} \right)^2} + \frac{{128}}{9} > 0$
Vậy hệ phương trình luôn luôn có nghiệm$\forall m$.

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải các hệ phương trình sau:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17  \\
\end{array}  \right.  \\
    \\
  \left. b \right)\left\{ \begin{array}
  {x^2} + {y^2} = 5 - 2xy  \\
  y\left( {x + y} \right) = 10  \\
\end{array}  \right.  \\
    \\
  \left. c \right)\left\{ \begin{array}
  2{x^2}{y^2} + {x^2} + 2x = 2  \\
  2{x^2}y - {x^2}{y^2} + 2xy = 1  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  {x^2} + {y^2} + xy + 2y + x = 2  \\
  2{x^2} - {y^2} - 2y - 2 = 0  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  2x + 3y = {x^2} + 3xy + {y^2}  \\
  {x^2} + 2{y^2} = x + 2y  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm giá trị của m để phương trình có nghiệm:
$\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17 + m  \\
\end{array}  \right.$

cho xin nick zing nhe –  hattorihejji0110 17-09-13 09:29 PM
minh muon ket ban vs cac pro toan hoc . lam quen o nick zing : linhhonbidanhtrai_99 nhe (nho ghi ro loi moi ket ban la thanh vien cua ''hoc tai nha'' nhe)chung ta se chia se kinh nghiem hoc tap cho nhau nhe :(( – –  hattorihejji0110 17-09-13 09:29 PM
Chat chit và chém gió
  • ♫Lốc♫Xoáy♫: praying 9/21/2014 10:43:43 AM
  • ♫Lốc♫Xoáy♫: thế mẹ có bảo gì ko 9/21/2014 10:43:54 AM
  • ♫Lốc♫Xoáy♫: ? 9/21/2014 10:43:56 AM
  • dolaemon98: ai có ny giơ tay coi 9/21/2014 10:46:37 AM
  • ankhatruongnguyen: thầy trần phương dạy tren học mãi bn ơi 9/21/2014 10:46:58 AM
  • ankhatruongnguyen: mình tham gia khóa học trên đấy 9/21/2014 10:47:20 AM
  • dolaemon98: hay đấy 9/21/2014 10:47:30 AM
  • ♫Lốc♫Xoáy♫: angel 9/21/2014 10:47:48 AM
  • ♫Lốc♫Xoáy♫: đào đâu ra ny 9/21/2014 10:47:52 AM
  • dolaemon98: học online à? 9/21/2014 10:47:53 AM
  • ankhatruongnguyen: tập tài liệu ấy tên là những viên kim cương trong bđt toán học 9/21/2014 10:48:02 AM
  • ♫Lốc♫Xoáy♫: hình như 500 hay sao ý 9/21/2014 10:48:07 AM
  • ankhatruongnguyen: mình học ol 9/21/2014 10:48:12 AM
  • ankhatruongnguyen: thầy giới thiệu cho học viên sách ấy 9/21/2014 10:48:41 AM
  • ankhatruongnguyen: mua về đọc thấy cũng hay 9/21/2014 10:48:52 AM
  • dolaemon98: tên trang web là j khi nào mình ưa xem thử 9/21/2014 10:48:59 AM
  • ankhatruongnguyen: hocmai 9/21/2014 10:49:06 AM
  • ♫Lốc♫Xoáy♫: hocmai.vn 9/21/2014 10:49:13 AM
  • ankhatruongnguyen: lên google tìm là thấy mà 9/21/2014 10:49:20 AM
  • dolaemon98: ngại mở 9/21/2014 10:49:31 AM
  • ♫Lốc♫Xoáy♫: nguyên hok kiểu ý hại não lắm 9/21/2014 10:49:42 AM
  • ankhatruongnguyen: happy 9/21/2014 10:49:57 AM
  • dolaemon98:9/21/2014 10:50:01 AM
  • ankhatruongnguyen: ngại đi 9/21/2014 10:50:16 AM
  • dolaemon98: ngồi máy nhiều thấy mỏi hết cả người 9/21/2014 10:50:20 AM
  • ankhatruongnguyen: vào Hà Nội học thì khổ 9/21/2014 10:50:28 AM
  • ankhatruongnguyen: đi xe buyt ê ngừoi 9/21/2014 10:50:37 AM
  • ♫Lốc♫Xoáy♫: laughing 9/21/2014 10:50:39 AM
  • ♫Lốc♫Xoáy♫: ở đấy hết giáo viên ư 9/21/2014 10:50:50 AM
  • ankhatruongnguyen: ở nhà bắt Wifi cho tiện 9/21/2014 10:51:01 AM
  • ankhatruongnguyen: nói chung là đỡ mệt 9/21/2014 10:51:25 AM
  • ♫Lốc♫Xoáy♫: angel 9/21/2014 10:51:26 AM
  • dolaemon98: nhà có wifi hay bắt chùa 9/21/2014 10:51:32 AM
  • ankhatruongnguyen: mình học có toán hóa 9/21/2014 10:51:35 AM
  • dolaemon98: sao ko học văn 9/21/2014 10:51:46 AM
  • dolaemon98: đh thi văn 9/21/2014 10:51:51 AM
  • ankhatruongnguyen: văn 5đ thôi 9/21/2014 10:52:02 AM
  • ankhatruongnguyen: sad 9/21/2014 10:52:10 AM
  • ankhatruongnguyen: 5đ là đc mà 9/21/2014 10:52:18 AM
  • ♫Lốc♫Xoáy♫: laughing văn thi c3 mk chém gió chém bão cũng đc 8.5 laughing 9/21/2014 10:52:24 AM
  • ankhatruongnguyen: trên lớp toàn dc 6 9/21/2014 10:52:25 AM
  • dolaemon98: năm ngoái thi văn cuối năm đc 4.5 9/21/2014 10:52:53 AM
  • dolaemon98: sad 9/21/2014 10:53:00 AM
  • ankhatruongnguyen: thi đh phải kháchappy 9/21/2014 10:53:01 AM
  • ankhatruongnguyen: văn phờ lắm 9/21/2014 10:53:10 AM
  • ♫Lốc♫Xoáy♫: laughing cũng chỉ là 1 chữ chém 9/21/2014 10:53:28 AM
  • dolaemon98: đúng là lốc xoáy chỉ giỏi chém 9/21/2014 10:53:44 AM
  • ankhatruongnguyen: chém láo thì cungx đi 9/21/2014 10:53:47 AM
  • ankhatruongnguyen: =.= 9/21/2014 10:53:51 AM
  • ankhatruongnguyen: mình chém tù lắm 9/21/2014 10:53:58 AM
  • ♫Lốc♫Xoáy♫: oh_go_on phải có cái gfi để chém mấy chém đc chứ chém ko thì trả đi 9/21/2014 10:54:21 AM
  • dolaemon98: chém sai nội dung nghệ thuật thì thôi 9/21/2014 10:54:26 AM
  • ♫Lốc♫Xoáy♫: từ lớp 6->9 ko 1 năm nào trên 6.5 văn 9/21/2014 10:55:00 AM
  • ankhatruongnguyen: hài thế ms chết 9/21/2014 10:55:03 AM
  • dolaemon98: sai tác giả cũng chịu 9/21/2014 10:55:09 AM
  • ♫Lốc♫Xoáy♫: đi thi c3 chém gió 8.5 9/21/2014 10:55:11 AM
  • ankhatruongnguyen: có bh chịu học văn đâu 9/21/2014 10:55:14 AM
  • ♫Lốc♫Xoáy♫: đứng tốp trong lớp laughing 9/21/2014 10:55:18 AM
  • ankhatruongnguyen: đầu từ dưới lên 9/21/2014 10:55:34 AM
  • dolaemon98: thật thần thánh 9/21/2014 10:55:41 AM
  • ♫Lốc♫Xoáy♫: laughing hôm đi thi c3 phòng có 3 bạn gái 9/21/2014 10:56:02 AM
  • ♫Lốc♫Xoáy♫: 2 bạn xấu ma chê quỷ hờn 9/21/2014 10:56:11 AM
  • ♫Lốc♫Xoáy♫: 1 bạn xinh lung linh ngồi ngắm bạn ý chém 9/21/2014 10:56:24 AM
  • ♫Lốc♫Xoáy♫: rolling_on_the_floor lúc báo điểm về ko tin nổi 9/21/2014 10:56:37 AM
  • ankhatruongnguyen: r k làm bài luôn à 9/21/2014 10:56:39 AM
  • dolaemon98: rolling_on_the_floor 9/21/2014 10:56:40 AM
  • ankhatruongnguyen: chicken 9/21/2014 10:56:48 AM
  • dolaemon98: 6.9 điểm 9/21/2014 10:56:50 AM
  • ankhatruongnguyen: há há 9/21/2014 10:56:56 AM
  • ankhatruongnguyen: mềnh còn dc 8đ 9/21/2014 10:57:04 AM
  • ♫Lốc♫Xoáy♫: mk cũng phục mk thật 9/21/2014 10:57:53 AM
  • dolaemon98: rolling_on_the_floor 9/21/2014 10:58:10 AM
  • dolaemon98: thi Anh mn sao? 9/21/2014 10:58:21 AM
  • ankhatruongnguyen: mình ổn 9/21/2014 10:58:29 AM
  • ankhatruongnguyen: Anh thấy bt 9/21/2014 10:58:39 AM
  • ♫Lốc♫Xoáy♫: anh ns thật trả biết gì 9/21/2014 10:58:51 AM
  • dolaemon98: tùy người thôi 9/21/2014 10:58:55 AM
  • ♫Lốc♫Xoáy♫: đi thi cứ 7 8 9 có lạ ko 9/21/2014 10:59:01 AM
  • dolaemon98: chỗ khó chỗ dễ 9/21/2014 10:59:06 AM
  • ankhatruongnguyen: ờ thì ở đây cô giáo dạy thích 9/21/2014 10:59:21 AM
  • ankhatruongnguyen: học k phải lo 9/21/2014 10:59:27 AM
  • ♫Lốc♫Xoáy♫: happy 9/21/2014 10:59:56 AM
  • dolaemon98: có phải học thêm ko? 9/21/2014 11:00:11 AM
  • dolaemon98: ngại học từ mới quá 9/21/2014 11:00:24 AM
  • ♫Lốc♫Xoáy♫: shame_on_you 9/21/2014 11:00:29 AM
  • ankhatruongnguyen: không phải học thêm 9/21/2014 11:00:37 AM
  • ankhatruongnguyen: cô hệ thống kt trên lớp 9/21/2014 11:00:45 AM
  • ankhatruongnguyen: đủ cả 9/21/2014 11:00:51 AM
  • dolaemon98: vậy cũng ngon 9/21/2014 11:00:57 AM
  • ♫Lốc♫Xoáy♫: đủ qua tốt nghiệp 9/21/2014 11:00:59 AM
  • ankhatruongnguyen: cô dạy từ lớp 10 lên 9/21/2014 11:00:59 AM
  • ♫Lốc♫Xoáy♫: yên tâm 9/21/2014 11:01:02 AM
  • dolaemon98: thôi t đi học văn nhá 9/21/2014 11:01:35 AM
  • ankhatruongnguyen: cô dạy kĩ cả 9/21/2014 11:01:39 AM
  • ankhatruongnguyen: happy@ 9/21/2014 11:01:42 AM
  • ankhatruongnguyen: cứ đi đi 9/21/2014 11:01:47 AM
  • ankhatruongnguyen: mềnh ủng hộ 9/21/2014 11:01:52 AM
  • ♫Lốc♫Xoáy♫: laughing 9/21/2014 11:04:38 AM
  • ♫Lốc♫Xoáy♫: em cát đâu rồi nhỉ 9/21/2014 11:07:19 AM
  • ♫Lốc♫Xoáy♫: sad 9/21/2014 11:07:23 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ BQT
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Chuyên Cơ Cuối Cùng
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon98
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • giola_2503
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Faker ^^
  • Angel
  • devilphuong96
  • Tiểu sa nhi
  • tqmaries34
  • bontiton96
  • hoang10a5.bc
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • hey
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • Lăn tăn
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • dihoklafdihok
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • fan.arsenalfc
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Không Ai Cả
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Min Tồ
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • kto138
  • Hòn Sỏi Buồn
  • teengirl_hn1998
  • trilac2013
  • Windy
  • kuzulies
  • ★.★Hoàng Huy★.★
  • nhoknana95
  • hoctainha
  • langvohue1234
  • fglory2912
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • dangtuan251097
  • c.x.sadhp1999
  • huyhoangfan
  • Duy Phong
  • hattuyetmuadong_banggia
  • mynhi0601
  • hikichbo
  • nambttvqht
  • nguyenxuando
  • ndanh9999999
  • dotrungtien97
  • ndanh999
  • xuka.love.nobita.4ever
  • tuongngo28