HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II VÀ ĐẲNG CẤP BẬC II


I. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II

1. Định nghĩa:
Hệ phương trình đối xứng loại II là hệ chứa hai ẩn x, y mà khi ta thay đổi vai trò x, y cho nhau thì phương trình này trở thành phương trình kia của hệ.
*Chú ý: Nếu $({x_0};{y_0})$ là nghiệm của hệ thì$({y_0};{x_0})$ cũng là nghiệm của hệ.

2. Các dạng của hệ phương trình đối xứng loại II:
Dạng 1:
   

$\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {f(y,x) = 0}
\end{array}} \right.$
(đổi vị trí x và y cho nhau thì phương trình này trở thành phương trình kia).

Phương pháp giải chung:
Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.
Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ

Ví dụ1:
Giải hệ phương trình sau:
${\text{(I}})\left\{ {\begin{array}{*{20}{c}}
  {{x^2} - 2x = y} \\
  {{y^2} - 2y = x}
\end{array}} \right.$
Nhận xét: Nếu thay đồng thời x bởi y và y bởi x thì phương trình thứ nhất sẽ trở thành phương trình thứ hai và ngược lại.
Giải:
Trừ từng vế hai phương trình trong hệ, ta được
$\begin{array}
  {\text{     }}(x - y)(x + y) - 2(x - y) =  - (x - y)  \\
   \Leftrightarrow {\text{ }}(x - y)(x + y - 1) = {\text{ }}0  \\
   \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Do đó, hệ phương trình đã cho tương đương với:
${\text{(Ia}})\left\{ \begin{array}
  x - y = 0  \\
  {x^2} - 2x = y  \\
\end{array}  \right.$    hoặc ${\text{(Ib}})\left\{ \begin{array}
  x + y - 1 = 0  \\
  {x^2} - 2y = y  \\
\end{array}  \right.$
Giải hệ (Ia) ta được nghiệm (0;0), (3;3).
Giải hệ (IIa) ta được nghiệm:
$\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$
Vậy hệ phương trình có 4 nghiệm là
(0;0), (3;3), $\left( {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right),\left( {\frac{{1 - \sqrt 5 }}{2};\frac{{1 + \sqrt 5 }}{2}} \right)$

Dạng 2:   

 $\left\{ {\begin{array}{*{20}{c}}
  {f(x,y) = 0} \\
  {g(x,y) = 0}
\end{array}} \right.$(trong đó chỉ có 1 phương trình đối xứng loại I)
Cách giải:

Đưa phương trình đối xứng về dạng tích, giải y theo x rồi thế vào phương trình còn lại.

Ví dụ 2:
Giải hệ phương trình:$\left\{ \begin{array}
  x - \frac{1}{x} = y - \frac{1}{y}{\text{   (1)}}  \\
  2{x^2} - xy - 1 = 0{\text{ (2)}}  \\
\end{array}  \right.$
Giải:
Điều kiện:    $x \ne 0;{\text{ y}} \ne {\text{0}}$. Khi đó:
$(1) \Leftrightarrow (x - y)\left( {1 + \frac{1}{{xy}}} \right) = 0{\text{    }} \Leftrightarrow \left[ \begin{array}
  x = y  \\
  y =  - \frac{1}{x}  \\
\end{array}  \right.$
Với x = y thì (2)$ \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x =  \pm 1$
Với $y =  - \frac{1}{x}$ thì (2) vô nghiệm
Vậy hệ phương trình có 2 nghiệm phân biệt (1;1), (–1;–1).

3. Một số bài tập về phương trình đối xứng loại II :
Ví dụ 3:

Giải hệ phương trình:$\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  {y^2} - 3y = 2x  \\
\end{array}  \right.$
Giải:
Trừ vế theo vế của hai phương trình, ta được:
$\begin{array}
  {\text{     }}{x^2} - {y^2} - 3x + 3y = 2y - 2x  \\
   \Leftrightarrow {\text{(x - y)(x + y - 1)}} = {\text{0}} \Leftrightarrow {\text{ }}\left[ \begin{array}
  x - y = 0  \\
  x + y - 1 = 0  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình đã cho tương đương với:
${\text{(I}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x - y = 0  \\
\end{array}  \right.$   hoặc   ${\text{(II}})\left\{ \begin{array}
  {x^2} - 3x = 2y  \\
  x + y - 1 = 0  \\
\end{array}  \right.$
Giải (I):
$(I) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2x  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x(x - 5) = 0  \\
  x = y  \\
\end{array}  \right. \Leftrightarrow x = y = 0 \vee x = y = 5$
Giải (II):
$\begin{array}
  (II) \Leftrightarrow \left\{ \begin{array}
  {x^2} - 3x = 2(1 - x)  \\
  y = 1 - x  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2} - x - 2 = 0  \\
  y = x - 1  \\
\end{array}  \right.  \\
  {\text{     }} \Leftrightarrow \left\{ \begin{array}
  x =  - 1  \\
  y = 2  \\
\end{array}  \right.{\text{  }} \vee {\text{  }}\left\{ \begin{array}
  x = 2  \\
  y =  - 1  \\
\end{array}  \right.  \\
\end{array} $
Vậy hệ phương trình có bốn nghiệm
(0;0), (5;5), (–1;2), (2;–1).

Ví dụ 4:
Giải hệ phương trình $\left\{ \begin{array}
  \sqrt {2x + 3}  + \sqrt {4 - y}  = 4{\text{  }}(1)  \\
  \sqrt {2y + 3}  + \sqrt {4 - x}  = 4{\text{  }}(2)  \\
\end{array}  \right.$
Giải:
Điều kiện: $\left\{ \begin{array}
   - \frac{3}{2} \leqslant x \leqslant 4  \\
   - \frac{3}{2} \leqslant y \leqslant 4  \\
\end{array}  \right.$.
Lấy(1) trừ (2) ta được:
$\begin{array}
  \,\,\,\,\,\,\,\,\,\left( {\sqrt {2x + 3}  - \sqrt {2y + 3} } \right) + \left( {\sqrt {4 - y}  - \sqrt {4 - x} } \right) = 0  \\
   \Leftrightarrow {\text{ }}\frac{{(2x + 3) - (2y + 3)}}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{{(4 - y) - (4 - x)}}{{\sqrt {4 - y}  + \sqrt {4 - x} }} = 0  \\
   \Leftrightarrow (x - y)\left( {\frac{2}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \frac{1}{{\sqrt {4 - y}  + \sqrt {4 - x} }}} \right) = 0 \Leftrightarrow x = y  \\
\end{array} $
Thay x = y vào (1), ta được:
$\sqrt {2x + 3}  + \sqrt {4 - x}  = 4 \Leftrightarrow x + 7 + 2\sqrt {(2x + 3)(4 - x)}  = 16$
$ \Leftrightarrow 2\sqrt { - 2{x^2} + 5x + 12}  = 9 - x \Leftrightarrow \left\{ \begin{array}
  9 - x \geqslant 0  \\
  9{x^2} - 38x + 33 = 0  \\
\end{array}  \right. \Leftrightarrow \left[ \begin{array}
  x = 3  \\
  x = \frac{{11}}{9}  \\
\end{array}  \right.\,\,$
Vậy hệ phương trình có 2 nghiệm phân biệt
$\left( {x;y} \right) = \left( {3;3} \right),\left( {\frac{{11}}{9};\frac{{11}}{9}} \right)$.

Ví dụ 5:
Giải hệ phương trình $\left\{ \begin{array}
  2y = \frac{{{y^2} + 1}}{{{x^2}}}  \\
  2x = \frac{{{x^2} + 1}}{{{y^2}}}  \\
\end{array}  \right.$
Giải:
Điều kiện: $x,y > 0$
Khi đó, hệ phương trình đã cho tương đương
$\left\{ \begin{array}
  2y{x^2} = {y^2} + 1{\text{  (1)}}  \\
  2x{y^2} = {x^2} + 1{\text{  (2)}}  \\
\end{array}  \right.$
Lấy (1) trừ (2) vế theo vế ta được:
        $\begin{array}
  {\text{     }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2xy(x - y) = y - x  \\
   \Leftrightarrow (x - y)\left( {2xy + x + y} \right) = 0\,\,\,{\text{mà }}\,\,\,\,\left( {2xy + x + y} \right) > 0  \\
   \Leftrightarrow x = y{\text{     (3)}}  \\
\end{array} $
Thay (3) vào (1) ta được:
$\begin{array}
  {\text{     }}2{x^3} = {x^2} + 1  \\
   \Leftrightarrow 2{x^3} - {x^2} - 1 = 0  \\
   \Leftrightarrow (x - 1)(\underbrace {2{x^2} + x + 1}_{ > 0\forall x}) = 0 \Leftrightarrow x = 1  \\
\end{array} $
Vậy hệ phương trình có nghiệm duy nhất
(x;y) = (1;1).

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải hệ phương trình:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  2x + y = \frac{3}{{{x^2}}}  \\
  2y + x = \frac{3}{{{y^2}}}  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. b \right)\left\{ \begin{array}
  xy + {x^2} = 1 + y  \\
  xy + {y^2} = 1 + x  \\
\end{array}  \right.  \\
  \left. c \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,d} \right)\left\{ \begin{array}
  x - 3y = \frac{{4y}}{x}  \\
  y - 3x = \frac{{4x}}{y}  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm a để hệ sau có nghiệm duy nhất:
$\left\{ \begin{array}
  {x^2} + xy = a(y - 1)  \\
  {y^2} + xy = a(x - 1)  \\
\end{array}  \right.$

Bài 3:
Chứng minh rằng với $a \ne 0$thì phương trình sau có nghiệm duy nhất:
$\left\{ \begin{array}
  2{x^2} = y + \frac{{{a^2}}}{y}  \\
  2{y^2} = x + \frac{{{a^2}}}{x}  \\
\end{array}  \right.$

II. HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI
1. Định nghĩa:

Biểu thức f(x; y) gọi là phương trình đẳng cấp bậc 2 nếu
f(mx; my) = m2f(x; y)
Hệ phương trình đẳng cấp bậc hai có dạng:
$\left\{ \begin{array}
  f\left( {x,y} \right) = a  \\
  g\left( {x,y} \right) = b  \\
\end{array}  \right.$
Trong đó: f(x; y) và g(x; y) là phương trình đẳng cấp bậc 2;
với a và b là hằng số.

2. Cách giải:
Xét  x = 0 thay vào hệ kiểm tra.
Với x ≠ 0 ta đặt y = xt thay vào hệ ta có:
$\left\{ \begin{array}
  f\left( {x,xt} \right) = a  \\
  g\left( {x,xt} \right) = b  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}f\left( {1,t} \right) = a  \\
  {x^2}g\left( {1,t} \right) = b  \\
\end{array}  \right.$
Sau đó, chia 2 vế của 2 phương trình với nhau ta được:
$f\left( {1,t} \right) = \frac{a}{b}g\left( {1,t} \right)\,\,\,\,\,\,\,\,\,\left( * \right)$
Giải phương trình (*) ta tìm được t.
Thế t vào hệ ta tìm được (x; y).

3. Các ví dụ:
Ví dụ 1:

Giải hệ phương trình sau: $\left\{ \begin{array}
  2{x^2} + {y^2} + 3xy = 12  \\
  2{\left( {x + y} \right)^2} - {y^2} = 14  \\
\end{array}  \right.\,\,\,\,\,\,\,\,\left( 1 \right)$
Giải.
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x ≠ 0 ta đặt y = xt. Khi đó hệ phương trình trở thành:
Khi đó (2) $ \Leftrightarrow {t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \begin{array}
  t = 1  \\
  t = 2  \\
\end{array}  \right.\,\,$(thỏa)
Khi t = 1 thế vào hệ ta được (x; y) = $\left( { \pm \sqrt 2 ;\,\, \pm \sqrt 2 } \right)$
Khi t = 2 thế vào hệ ta được (x; y) = (1; 2), (–1; –2)
Vậy nghiệm của hệ là:(x; y) = $\left( { \pm \sqrt 2 ; \pm \sqrt 2 } \right)$, (1; 2), (–1; –2)

Ví dụ 2:
Tìm m để hệ phương trình sau có nghiệm:
$\left\{ \begin{array}
  {x^2} + xym + {y^2} = m  \\
  {x^2} + \left( {m - 1} \right)xy + m{y^2} = m  \\
\end{array}  \right.$
Giải:
Dễ thấy x = 0 không là nghiệm của hệ phương trình
Với x  0 ta đặt y = xt. Thế vào hệ phương trình ta được
$\begin{array}
  \,\,\,\,\,\,\left\{ \begin{array}
  {x^2} + {x^2}tm + {x^2}{t^2} = m  \\
  {x^2} + \left( {m - 1} \right){x^2}t + {x^2}{t^2}m = m  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x^2}\left( {{t^2} + tm + 1} \right) = m  \\
  {x^2}\left( {{t^2}m + tm - t + 1} \right) = m  \\
\end{array}  \right.  \\
   \Rightarrow \frac{{{t^2} + tm + 1}}{{{t^2}m + tm +  - t + 1}} = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left( {1 - m} \right){t^2} + t = 0 \Leftrightarrow \left[ \begin{array}
  t = 0  \\
  \left( {1 - m} \right)t = 1  \\
\end{array}  \right.  \\
\end{array} $
Khi t = 0 thì         
Khi (1–m)t = 1    $ \Rightarrow \left\{ \begin{array}
  y = \frac{x}{{m - 1}}  \\
  {y^2} = \frac{m}{{2{m^2} - 3m + 2}}  \\
\end{array}  \right.\,\,\,\,\,\,\left( * \right)$
Vì $2{m^2} - 3m + 2 = 2{\left( {m - \frac{3}{4}} \right)^2} + \frac{7}{8} > 0$ nên (*) có nghĩa$ \Leftrightarrow m \geqslant 1$
 Vậy với $m \geqslant 1$ thì hệ phương trình trên có nghiệm.

Ví dụ 3:
Cho hệ phương trình sau: $\left\{ \begin{array}
  {x^2} - 4xy + {y^2} = m  \\
  {y^2} - 3xy = 4  \\
\end{array}  \right.$
Chứng minh hệ phương trình luôn luôn có nghiệm $\forall m$.
Giải:
Khi x = 0 không là nghiệm của hệ phương trình.
Với x   0 ta đặt y = xt. Khi đó hệ phương trình trở thành
 
Khi đó $\left( * \right) \Leftrightarrow \left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,\,\left( {**} \right)$
Với m = 4 thì (**) có dạng $ - 4t + 4 = 0 \Leftrightarrow t = 1$ (thoả)
Với m   4 thì (**) có dạng:
$\left( {4 - m} \right){t^2} - \left( {16 - 3m} \right)t + 4 = 0\,\,$
Với $\Delta  = 9{m^2} - 80m + 192 = {\left( {3m - \frac{{40}}{3}} \right)^2} + \frac{{128}}{9} > 0$
Vậy hệ phương trình luôn luôn có nghiệm$\forall m$.

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải các hệ phương trình sau:
$\begin{array}
  \left. a \right)\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17  \\
\end{array}  \right.  \\
    \\
  \left. b \right)\left\{ \begin{array}
  {x^2} + {y^2} = 5 - 2xy  \\
  y\left( {x + y} \right) = 10  \\
\end{array}  \right.  \\
    \\
  \left. c \right)\left\{ \begin{array}
  2{x^2}{y^2} + {x^2} + 2x = 2  \\
  2{x^2}y - {x^2}{y^2} + 2xy = 1  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  {x^2} + {y^2} + xy + 2y + x = 2  \\
  2{x^2} - {y^2} - 2y - 2 = 0  \\
\end{array}  \right.  \\
    \\
  \left. d \right)\left\{ \begin{array}
  2x + 3y = {x^2} + 3xy + {y^2}  \\
  {x^2} + 2{y^2} = x + 2y  \\
\end{array}  \right.  \\
\end{array} $

Bài 2:
Tìm giá trị của m để phương trình có nghiệm:
$\left\{ \begin{array}
  3{x^2} + 2xy + {y^2} = 11  \\
  {x^2} + 2xy + 3{y^2} = 17 + m  \\
\end{array}  \right.$

cho xin nick zing nhe –  hattorihejji0110 17-09-13 09:29 PM
minh muon ket ban vs cac pro toan hoc . lam quen o nick zing : linhhonbidanhtrai_99 nhe (nho ghi ro loi moi ket ban la thanh vien cua ''hoc tai nha'' nhe)chung ta se chia se kinh nghiem hoc tap cho nhau nhe :(( – –  hattorihejji0110 17-09-13 09:29 PM
Chat chit và chém gió
  • minhkute141: còn 2 điểm nữa mới vẽ dk 10/21/2014 11:42:42 PM
  • tuanthanh31121997: 2 điêm vẽ bbt ra xét cực đại cực tiểu 10/21/2014 11:43:03 PM
  • minhkute141: cho cái j = cái j nữa á, cô nói mà k rõ 10/21/2014 11:43:17 PM
  • tuanthanh31121997: 2 điểm còn lại là xết bảng biến thiên thôi 10/21/2014 11:43:48 PM
  • minhkute141: đó là đối vs cái đồ thị kia thôi bn ơi! 10/21/2014 11:45:12 PM
  • tuanthanh31121997: hả đồ thị nào??? 10/21/2014 11:45:38 PM
  • minhkute141: còn cái này pải có 2 điểm đó chứ k pải xét bản bt 10/21/2014 11:46:03 PM
  • tuanthanh31121997: haizzz 2 điểm nào nữa 10/21/2014 11:46:13 PM
  • tuanthanh31121997: đọc lại đề minh coi cái 10/21/2014 11:46:31 PM
  • minhkute141: vẽ đồ thị hàm số y= l1/2^2+x-3/2l 10/21/2014 11:46:50 PM
  • tuanthanh31121997: 1/2x^2 hả 10/21/2014 11:47:33 PM
  • minhkute141: bn thử lấy giấy bút ra làm đi r ms pít, có 3 điểm thui k có làm ra dk đâu 10/21/2014 11:47:40 PM
  • minhkute141: uh 10/21/2014 11:47:49 PM
  • minhkute141: vẽ đồ thị hàm số y= l1/2x^2+x-3/2l 10/21/2014 11:48:14 PM
  • tuanthanh31121997: 1/2 nhân x^2 hay 1/(2x^2) 10/21/2014 11:48:59 PM
  • minhkute141: 1/2 nhân x^2 10/21/2014 11:49:23 PM
  • minhkute141: s r z? 10/21/2014 11:50:46 PM
  • tuanthanh31121997: hả?? 10/21/2014 11:50:57 PM
  • minhkute141: sao rồi z? 10/21/2014 11:51:11 PM
  • tuanthanh31121997: đợi tí xong ngay 10/21/2014 11:51:24 PM
  • tuanthanh31121997: đồ thi hình W hả 10/21/2014 11:52:24 PM
  • minhkute141: uh 10/21/2014 11:52:50 PM
  • Saori Hara: mấy thánh chưa ngủ ak 10/21/2014 11:53:25 PM
  • tuanthanh31121997: đâu tiên ban tìm đk 3 điểm nhờ x=0 vs y=0 rồi nhi 10/21/2014 11:53:41 PM
  • minhkute141: r 10/21/2014 11:53:50 PM
  • tuanthanh31121997: 1 cái nưa bạn xét đạo hàm cảu hàm đó 10/21/2014 11:53:51 PM
  • Saori Hara: tớ ms chép mấy định nghỉa dao đông để mai kiểm tra giữa hk xong 10/21/2014 11:54:13 PM
  • minhkute141: là s? 10/21/2014 11:54:17 PM
  • Saori Hara: mệt quá 10/21/2014 11:54:19 PM
  • Saori Hara: h đi ngủ 10/21/2014 11:54:29 PM
  • tuanthanh31121997: tính đạo hàm nà 10/21/2014 11:54:29 PM
  • minhkute141: tính đạo hàm ljz? chưa học happy 10/21/2014 11:55:14 PM
  • tuanthanh31121997: bạn lơp mấy 10/21/2014 11:55:37 PM
  • minhkute141: 10 10/21/2014 11:55:41 PM
  • tuanthanh31121997: lơp 10 khảo sát đồ thì băng niềm tin à 10/21/2014 11:55:59 PM
  • minhkute141: vẽ đồ thị HS mà 10/21/2014 11:56:30 PM
  • tuanthanh31121997: chưa học đạo hàm làm sao vẽ đk phần này 10/21/2014 11:56:40 PM
  • tuanthanh31121997: xét kiểu tâm đỗi xưng x=-b/2a may ra 10/21/2014 11:57:03 PM
  • tuanthanh31121997: thê này nha 10/21/2014 11:57:13 PM
  • minhkute141: s ? 10/21/2014 11:57:52 PM
  • tuanthanh31121997: ban tính x=-b/2a nha 10/21/2014 11:57:59 PM
  • tuanthanh31121997: thay x=-b/2a vào pt y=... bạn sẽ tim đk 1 điểm nưa 10/21/2014 11:58:20 PM
  • minhkute141: tr` tính cái đó ra lâu r crying hồi nảy nói vs bạn tính r cái đó r s nữa đó b k nhớ à? 10/21/2014 11:59:08 PM
  • tuanthanh31121997: tinh rồi là đk rồi đo 10/21/2014 11:59:28 PM
  • tuanthanh31121997: vãi cô đem phần 12 cho hs lơp 10 làm haizz 10/22/2014 12:00:00 AM
  • minhkute141: thay cái vào y là mới tìm ra dk 1 điểm hoy đó b ! 10/22/2014 12:00:16 AM
  • tuanthanh31121997: y=0 bạn tim đk 2 điểm mà 10/22/2014 12:00:42 AM
  • minhkute141: Đau lòng qá! 10/22/2014 12:01:23 AM
  • tuanthanh31121997: ?? 10/22/2014 12:01:30 AM
  • minhkute141: bn qên r he s đó! rối ... 10/22/2014 12:02:13 AM
  • tuanthanh31121997: hả?? 10/22/2014 12:02:31 AM
  • minhkute141: cô kêu mấy ac lớp 12 học r mà qên, nên bay h mấy e pải lo nhớ đi r xong h tui k bít lun lấy j mà nhớ đây 10/22/2014 12:04:03 AM
  • tuanthanh31121997: haha tui 12 mà đang nhơ cô lo xa vãi 10/22/2014 12:04:58 AM
  • tuanthanh31121997: lên 12 học lại nưa mà 10/22/2014 12:05:09 AM
  • minhkute141: Z là bn cung qên phần này r đó crying 10/22/2014 12:05:21 AM
  • tuanthanh31121997: sao quên đang nhơ mà 10/22/2014 12:05:43 AM
  • tuanthanh31121997: cai nãy vẽ bt mà 10/22/2014 12:05:53 AM
  • tuanthanh31121997: lên 12 có cách xét đạo hàm vẽ mây cái này siêu nhanh 10/22/2014 12:06:14 AM
  • minhkute141: |Ờ cô kêu lên cách này khó hơn 12 10/22/2014 12:07:06 AM
  • tuanthanh31121997: cách này tui vân nhớ bt mà mà cách này loai bỏ dân đi là vừa 10/22/2014 12:07:52 AM
  • minhkute141: nhưng mà h Minh đang học cách này k có bay qa 12 dk crying 10/22/2014 12:07:57 AM
  • tuanthanh31121997: thi cách 12 vs cách này chỉ khác nhau mỗi đoạn tim tâm đối xưng thôi 10/22/2014 12:08:30 AM
  • minhkute141: t ra đỉnh là (-1;2) 10/22/2014 12:09:37 AM
  • tuanthanh31121997:10/22/2014 12:09:46 AM
  • minhkute141: 2 bên là 1, -3 10/22/2014 12:09:58 AM
  • tuanthanh31121997: ờ đúng 10/22/2014 12:10:06 AM
  • minhkute141: yeahh z là vẽ ĐT của t cunq đúng lun r 10/22/2014 12:10:33 AM
  • tuanthanh31121997: còn 1 điêm x=0 vs y=-3/2 nưa 10/22/2014 12:11:09 AM
  • minhkute141: đó 2 điểm đó hk pít 10/22/2014 12:11:48 AM
  • tuanthanh31121997: 2 điểm đó ta xet x=0 thay vào đồ thi là đk mà 10/22/2014 12:12:19 AM
  • minhkute141: nhớ r 10/22/2014 12:14:01 AM
  • tuanthanh31121997: ok xong rồi nah 10/22/2014 12:14:15 AM
  • minhkute141: ý là 1 điểm cho x=0 thay vào đồ thị, 1 điểm nữa cho y=c thay vào đồ thị? 10/22/2014 12:14:47 AM
  • tuanthanh31121997: cho x=0 thay vào đồ thì đó 10/22/2014 12:15:21 AM
  • tuanthanh31121997: làm gì có thay y=c nưa 10/22/2014 12:15:28 AM
  • minhkute141: y=-3/2 là cho y=c nhớ cô nói z mà 10/22/2014 12:16:09 AM
  • tuanthanh31121997: à đung rồi đó 10/22/2014 12:16:31 AM
  • tuanthanh31121997: tường là cho y=c vao đồ thị 10/22/2014 12:16:51 AM
  • minhkute141: may mà nhớ cô nói chứ nge theo p hết chắc hk hỉu y=-3/2 từ đâu ra happy 10/22/2014 12:17:25 AM
  • tuanthanh31121997: co giảng theo kiểu quan điểm quá dễ lệch lạc phương hương 10/22/2014 12:17:31 AM
  • minhkute141: là s? 10/22/2014 12:18:12 AM
  • minhkute141: là s? 10/22/2014 12:18:15 AM
  • tuanthanh31121997: chỉ cần thay x=0 vào y=1/2*x^2+x-3/2 là đk mà 10/22/2014 12:18:27 AM
  • minhkute141:10/22/2014 12:19:41 AM
  • minhkute141: z là tại cô hèn chi t khó hỉu 10/22/2014 12:20:22 AM
  • tuanthanh31121997: ừ chính nó 10/22/2014 12:20:39 AM
  • minhkute141: chính xác là tại cô >.< 10/22/2014 12:20:46 AM
  • tuanthanh31121997: cô nói theo kinh nghiêm nên học trò khó hỉu 10/22/2014 12:21:05 AM
  • minhkute141: mà nè níu như trao đổi = hình ảnh chắc nảy h 2 đứa giải xong bài này nhanh r ó ha 10/22/2014 12:22:33 AM
  • tuanthanh31121997: cai này phải nói nêu trao đổi băng hình ảnh là anh bày xong cho e rồi chơ 10/22/2014 12:23:36 AM
  • minhkute141: bất tiện qá! nói 3.4 tiếng đòng hồ ms hỉu ra dk 1 bài :/ 10/22/2014 12:23:59 AM
  • tuanthanh31121997: hahaah rolling_on_the_floor 10/22/2014 12:24:20 AM
  • minhkute141: tongue đúng cũn đúng, 10/22/2014 12:25:11 AM
  • tuanthanh31121997: rolling_on_the_floor 10/22/2014 12:25:25 AM
  • vlcmvui: có ai k? 10/22/2014 12:57:39 AM
  • tieutuliti98: http://toan.hoctainha.vn/Hoi-Dap/Cau-Hoi/127715/pro-giup-voi 10/22/2014 5:48:18 AM
  • tieutuliti98: http://toan.hoctainha.vn/Hoi-Dap/Cau-Hoi/127716/pro-giup-voi 10/22/2014 5:51:23 AM
  • tieutuliti98: http://toan.hoctainha.vn/Hoi-Dap/Cau-Hoi/127717/ae-giup-toan-elip-vs 10/22/2014 5:51:32 AM
  • tieutuliti98: mọi người vào xem rui giai giúp với 10/22/2014 5:51:54 AM
  • tieutuliti98: co ai k 10/22/2014 7:55:28 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • khangnguyenthanh
  • roilevitinh_hn
  • Hỗ Trợ BQT
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Chuyên Cơ Cuối Cùng
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon98
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • giola_2503
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Faker ^^
  • Angel
  • devilphuong96
  • Tiểu sa nhi
  • tqmaries34
  • ankhatruongnguyen
  • bontiton96
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • hey
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • Lăn tăn
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • dihoklafdihok
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • fan.arsenalfc
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Không Ai Cả
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Min Tồ
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • kto138
  • Sỏi Bự
  • teengirl_hn1998
  • trilac2013
  • Wind
  • kuzulies
  • ★.★Logarit★.★
  • nhoknana95
  • hoctainha
  • langvohue1234
  • fglory2912
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • cuoidiem035
  • giam_chua
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • dangtuan251097
  • c.x.sadhp1999
  • huyhoangfan
  • Duy Phong
  • hattuyetmuadong_banggia
  • SNHC
  • mynhi0601
  • hikichbo
  • nguyenxuando
  • ndanh9999999
  • Saori Hara
  • ndanh999
  • xuka.love.nobita.4ever
  • tuongngo28
  • silanmarry
  • tieutuliti98
  • kaitokidabcd
  • loan.pham7300
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Nel Kezo