Trong bài viết này chúng ta sẽ đề cập đến hai ứng dụng cơ bản của định lý Lagrange, đó là chứng minh bất đẳng thức và chứng minh phương trình có nghiệm.
  Phương pháp :
Định lý Lagrange : Nếu hàm số $f(x)$ liên tục trên $[a; b]$, có đạo hàm trong $(a, b)$ thì tồn tại ít nhất một số $c \in (a, b)$ sao cho :        $f(b)-f(a)=f'(c).(b-a)$
Như vậy : Nếu $f(b)=f(a)$ thì phương trình $f'(x)=0$ có nghiệm $x=c \in (a, b)$
Sau đây là các ví dụ minh họa.

Ví dụ $1.$ Chứng minh rằng nếu $2a+3b+6c=0$ với $a, b, c \in \mathbb{R}$ phương trình $ax^2+bx +c=0$ có nghiệm thuộc $(0, 1)$.
Lời giải :
Xét hàm số : $\displaystyle f(x)=\frac{1}{3}ax^3+\frac{1}{2}bx^2+cx$ liên tục và khả vi trên $(0, 1)$
Ta có : $f'(x)=ax^2+bx+c$
Theo định lý Lagrange thì tồn tại số $x_0 \in (a, b)$ sao cho :
                                  $f(1)-f(0)=f'(x_0)(1-0)=f'(x_0)$
          với $\begin{cases}f(1)=\frac{1}{3}a+\frac{1}{2}b +c=\frac{2a+3b+6c}{6}\\ f(0)=0 \end{cases}$
Suy ra  $0=\frac{2a+3b+6c}{6}=ax_0^2+bx_0+c$
Như vậy $x_0$ là nghiệm của phương trình $ax^2+bx+c=0$ (đpcm).

Ví dụ $2.$ Chứng minh rằng phương trình :
             $5x^4+40x^3+105x^2+100x+24=0$ có bốn nghiệm phân biệt.
Lời giải :
Xét hàm số :  $f(x)=x^5+10x^4+35x^3+50x^2+24x$ liên tục và khả vi trên $\mathbb{R}$.
nhận thấy       $\begin{cases}f(x)=x(x+1)(x+2)(x+3)(x+4) \\ f'(x)=5x^4+40x^3+105x^2+100x+24 \end{cases}$
Do đó phương trình $f(x)=0$ có các nghiệm là $-4, -3, -2, -1, 0$. Tức là $f(-4)=f(-3)=f(-2)=f(-1)=f(0)=0$
Áp dụng định lý Lagrange lần lượt trên các đoạn :
             $[-4, -3], [-3, -2], [-2, -1], [-1, 0]$
Chẳng hạn xét trên đoạn $ [-1, 0]$ thì tồn tại $x_1$ sao cho:
               $f(0)-f(-1)=f'(x_1)(0- -1)=f'(x_1)$  với $x_1 \in (-1, 0) $
  $\Rightarrow 5x_1^4+40x_1^3+105x_1^2+100x_1+24=0 $
  $\Rightarrow x=x_1 $ là một nghiệm của phương trình $5x^4+40x^3+105x^2+100x+24=0$
Trong $(-1, 0)$ có một nghiệm, làm tương tự với ba khoảng còn lại ta được thêm ba nghiệm nữa.
Mặt khác thì các khoảng này tách rời nhau nên phương trình đã cho có bốn nghiệm phân biệt.

Ví dụ $3.$ Chứng minh rằng với mọi $a, b, c \in \mathbb{R}$ cho trước thì phương trình :
                 $a\cos 3x +b\cos 2x + c\cos x + \sin x=0$ luôn có nghiệm.
Lời giải :
Xét hàm số : $f(x) = \frac{1}{3}a\sin 3x + \frac{1}{2}b\sin 2x + c\sin x -\cos x$
Ta thấy $f(x)$ liên tục và khả vi trên $(0, 2\pi)$.
Mặt khác,  $\begin{cases}f'(x) = a\cos 3x +b\cos 2x + c\cos x + \sin x \\ f(0)=f(2\pi)=-1 \end{cases}$.
Áp dụng định lý Lagrange thì tồn tại $x_0 \in (0, 2\pi)$ sao cho :
             $f(2\pi)-f(0)=f'(x_0)(2\pi-0)=2\pi.f'(x_0)$
$\Rightarrow a\cos 3x_0 +b\cos 2x_0 + c\cos x_0 + \sin x_0=0$
$\Rightarrow x_0$ là nghiệm của phương trình đã cho.

Ví dụ $4.$ Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots +a_1x+a_0$ thỏa mãn :
             $\frac{a_n}{n+1} + \frac{a_{n-1}}{n}+ \cdots + \frac{a_1}{2}+a_0 = 0$.
Chứng minh phương trình $f(x)=0$ luôn có ít nhất một nghiệm.
Lời giải :
Xét hàm số $g(x)=\frac{a_n}{n+1}x^{n+1} + \frac{a_{n-1}}{n}x^n+ \cdots + \frac{a_1}{2}x^2+a_0x $
thấy rằng $g(x)$ liên tục và khả vi trên $\mathbb{R}$.
Mặt khác,  $\begin{cases}g'(x) =a_nx^n+a_{n-1}x^{n-1}+\cdots +a_1x+a_0 = f(x)\\ g(0)=0\\g(1)=\frac{a_n}{n+1} + \frac{a_{n-1}}{n}+ \cdots + \frac{a_1}{2}+a_0 = 0 \end{cases}$.
Áp dụng định lý Lagrange thì tồn tại $x_0 \in (0,1)$ sao cho :
             $g(1)-g(0)=g'(x_0)(1-0)=g'(x_0)=f(x_0)$
$\Rightarrow a_nx_0^n+a_{n-1}x_0^{n-1}+\cdots +a_1x_0+a_0=0$
$\Rightarrow x_0$ là nghiệm của phương trình $f(x)=0$.

Ví dụ $5.$ Cho $0<a<b$. Chứng minh rằng :
                                $\displaystyle \frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$
Lời giải :
Bất đẳng thức cần chứng minh tương đương với :
                                 $\displaystyle \frac{b-a}{b} < \ln b - \ln a < \frac{b-a}{a}$
Xét hàm số : $f(x)=\ln x$ với $x \in (a, b)$
                    $f'(x)=\frac{1}{x}$ luôn tồn tại với $x \in (a, b)$ do $0<a<b$.
Theo định lý Lagrange thì tồn tại $c \in (a, b)$ sao cho :
                    $f(b)-f(a)=f'(c)(b-a)$
              $\Leftrightarrow \displaystyle \ln b - \ln a = \frac{1}{c}(b-a)$
              $\Leftrightarrow \displaystyle \frac{1}{c}=\frac{\ln b - \ln a}{b-a}$
Mặt khác : $a<c<b\Rightarrow \displaystyle \frac{1}{b}<\frac{1}{c}<\frac{1}{a}\Rightarrow \frac{1}{b}<\frac{\ln b - \ln a}{b-a}<\frac{1}{a}$
             $\Leftrightarrow  \displaystyle \frac{b-a}{b} < \ln b - \ln a < \frac{b-a}{a}$ (đpcm).

Ví dụ $6.$ Chứng minh rằng :
                 $\displaystyle \frac{a-b}{2} \le \cos \frac{a+b}{2} .\sin \frac{a-b}{2} \le  \frac{b-a}{2}$
Lời giải :
Bất đẳng thức cần chứng minh  $\Leftrightarrow a-b \le \sin a - \sin b \le b-a$
                                                          $\Leftrightarrow  \left| {\sin b - \sin a} \right| \le |b-a|$
Xét hàm số : $f(x)=\sin x$ với $x \in (a, b)$
                        $f'(x)=\cos x$ luôn tồn tại $\forall x \in (a, b)$
 Theo định lý Lagrange thì tồn tại $c \in (a, b)$ sao cho :
                     $f(b)-f(a)=f'(c)(b-a)$
              $\Rightarrow |f'(c)|=\left| {\frac{f(b)-f(a)}{b-a}} \right|$
              $\Rightarrow |\cos c|=\frac{ \left| {\sin b - \sin a} \right| }{|b-a|}$
Vì $|\cos c| \le 1\Rightarrow \frac{ \left| {\sin b - \sin a} \right| }{|b-a|} \le 1$
Do đó : $ \left| {\sin b - \sin a} \right| \le |b-a|$ (đpcm).

Ví dụ $7.$ Cho $n>1, n \in \mathbb{Z}$. Chứng minh rằng :
            $\displaystyle \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} < \ln n < \displaystyle1+ \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} $
Lời giải :
Xét hàm số : $f(x)=\ln x$ với $x \in (n-1, n)$ với $n>1$.
                        $f'(x)=\frac{1}{x}$ luôn tồn tại $\forall x \in (n-1, n)$ với $n>1$.
 Theo định lý Lagrange thì tồn tại $c \in (a,b)$ sao cho :
                          $f(n) - f(n-1)=f'(c)\left[ {n-(n-1)} \right]=f'(c)$
               $ \Rightarrow \ln n - \ln (n-1)= \frac{1}{c}$
 Vì $n-1 < c< n \Rightarrow \frac{1}{n} < \frac{1}{c} < \frac{1}{n-1}$
                          $\Rightarrow \frac{1}{n} < \ln n - \ln (n-1) < \frac{1}{n-1}            (*)$
 Lần lượt thay $n=2,3, \cdots, n$ vào $(*)$ ta được :
$\begin{cases} \frac{1}{2} < \ln 2 < 1  \\ \frac{1}{3} < \ln 3 - \ln 2 < \frac{1}{2}\\ \frac{1}{4} < \ln 4 - \ln 3 < \frac{1}{3}     \\ \cdots \\ \frac{1}{n} < \ln n - \ln (n-1) < \frac{1}{n-1}  \end{cases}$
Cộng các bất đẳng thức trên vế với vế ta được :
$\displaystyle \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} < \ln 2 + \ln 3 - \ln 2+\ln 4 - \ln 3 + \cdots + \ln n - \ln (n-1) < \displaystyle1+ \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} $
Do đó :
                $\displaystyle \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} < \ln n < \displaystyle1+ \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} $  (đpcm).

BÀI TẬP ÁP DỤNG

Bài $1.$ Cho các số thực $a, b, c$ thỏa mãn $14a+9b+6c=0$. Chứng minh rằng phương trình $ax^2 +bx +c = 0$ có ít nhât một nghiệm thuộc $[1, 2]$.

Bài $2.$ Chứng minh rằng nếu các số $a, b, c$ thỏa mãn $\frac{a}{m+2}+\frac{b}{m+1} +\frac{c}{m}=0$ với $m \in \mathbb{N}$ thì phương trình $ax^2 +bx +c = 0$ có nghiệm thuộc $(0, 1)$.

Bài $3.$ Chứng minh rằng nếu phương trình $a_1\cos x + a_2\cos 2x + \cdots + a_n\cos nx=0$ luôn có nghiệm với mọi $a_i \in \mathbb{R}$ với $i=1,2, \cdots, n.$

Bài $4$. Chứng minh rằng nếu phương trình $a_nx^n+a_{n-1}x^{n-1}+\cdots +a_1x=0$ có nghiệm dương thì phương trình $na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\cdots +a_1=0$ cũng có nghiệm dương.

Bài $5.$ Chứng minh rằng với mọi mọi $a, b \in \mathbb{R}$ thì : $\left| {\arctan a - \arctan b} \right| \le |a-b|$.

Bài $6.$ Chứng minh rằng $\frac{1}{a} < \frac{\ln a}{a-1} <1$ với $a>1$.

Bài $7.$ Chứng minh rằng với $a<a \le b$ và $n>1, n\in \mathbb{N}$ thì
                              $n.a^{n-1}(b-a) \le b^n - a^n \le nb^{n-1}(b-a)$

Thẻ

Lượt xem

15122
Chat chit và chém gió
  • Update: . 1/22/2017 11:15:33 AM
  • Update: . 1/22/2017 11:15:33 AM
  • Update: . 1/22/2017 11:15:33 AM
  • Update: . 1/22/2017 11:15:33 AM
  • Update: . 1/22/2017 11:15:34 AM
  • Update: . 1/22/2017 11:15:34 AM
  • Update: . 1/22/2017 11:15:34 AM
  • Update: . 1/22/2017 11:15:34 AM
  • Update: . 1/22/2017 11:15:34 AM
  • Update: . 1/22/2017 11:15:35 AM
  • Update: . 1/22/2017 11:15:35 AM
  • Update: . 1/22/2017 11:15:35 AM
  • Update: . 1/22/2017 11:15:35 AM
  • Update: . 1/22/2017 11:15:35 AM
  • Update: . 1/22/2017 11:15:36 AM
  • Update: . 1/22/2017 11:15:36 AM
  • Update: . 1/22/2017 11:15:36 AM
  • Update: . 1/22/2017 11:15:36 AM
  • Update: . 1/22/2017 11:15:36 AM
  • Update: . 1/22/2017 11:15:37 AM
  • Update: . 1/22/2017 11:15:37 AM
  • Update: . 1/22/2017 11:15:37 AM
  • Update: . 1/22/2017 11:15:37 AM
  • Update: . 1/22/2017 11:15:37 AM
  • Update: . 1/22/2017 11:15:38 AM
  • Update: . 1/22/2017 11:15:38 AM
  • Update: . 1/22/2017 11:15:38 AM
  • Update: . 1/22/2017 11:15:38 AM
  • Update: . 1/22/2017 11:15:39 AM
  • Update: . 1/22/2017 11:15:39 AM
  • Update: . 1/22/2017 11:15:39 AM
  • Update: . 1/22/2017 11:15:39 AM
  • Update: . 1/22/2017 11:15:39 AM
  • Update: . 1/22/2017 11:15:40 AM
  • Update: . 1/22/2017 11:15:40 AM
  • Update: . 1/22/2017 11:15:40 AM
  • Update: . 1/22/2017 11:15:40 AM
  • Update: . 1/22/2017 11:15:41 AM
  • Update: . 1/22/2017 11:15:41 AM
  • Update: . 1/22/2017 11:15:41 AM
  • Update: . 1/22/2017 11:15:41 AM
  • Update: . 1/22/2017 11:15:42 AM
  • Update: . 1/22/2017 11:15:42 AM
  • Update: . 1/22/2017 11:15:42 AM
  • Update: . 1/22/2017 11:15:42 AM
  • Update: . 1/22/2017 11:15:42 AM
  • Update: . 1/22/2017 11:15:43 AM
  • Update: . 1/22/2017 11:15:43 AM
  • Update: . 1/22/2017 11:15:43 AM
  • Update: . 1/22/2017 11:15:43 AM
  • Update: . 1/22/2017 11:15:44 AM
  • Update: . 1/22/2017 11:15:44 AM
  • Update: . 1/22/2017 11:15:44 AM
  • Update: . 1/22/2017 11:15:44 AM
  • Update: . 1/22/2017 11:15:44 AM
  • Update: . 1/22/2017 11:15:45 AM
  • Update: . 1/22/2017 11:15:45 AM
  • Update: . 1/22/2017 11:15:45 AM
  • Update: . 1/22/2017 11:15:45 AM
  • Update: . 1/22/2017 11:15:46 AM
  • Update: . 1/22/2017 11:15:46 AM
  • Update: . 1/22/2017 11:15:46 AM
  • Update: . 1/22/2017 11:15:46 AM
  • Update: . 1/22/2017 11:15:47 AM
  • Update: . 1/22/2017 11:15:47 AM
  • Update: . 1/22/2017 11:15:47 AM
  • Update: . 1/22/2017 11:15:47 AM
  • Update: . 1/22/2017 11:15:47 AM
  • Update: . 1/22/2017 11:15:48 AM
  • Update: . 1/22/2017 11:15:48 AM
  • Update: . 1/22/2017 11:15:48 AM
  • Update: . 1/22/2017 11:15:48 AM
  • Update: . 1/22/2017 11:15:48 AM
  • Update: . 1/22/2017 11:15:49 AM
  • Update: . 1/22/2017 11:15:49 AM
  • Update: . 1/22/2017 11:15:49 AM
  • Update: . 1/22/2017 11:15:49 AM
  • Update: . 1/22/2017 11:15:49 AM
  • Update: . 1/22/2017 11:15:50 AM
  • Update: . 1/22/2017 11:15:50 AM
  • Update: . 1/22/2017 11:15:50 AM
  • Update: . 1/22/2017 11:15:50 AM
  • Update: . 1/22/2017 11:15:51 AM
  • Update: . 1/22/2017 11:15:51 AM
  • Update: . 1/22/2017 11:15:51 AM
  • Update: . 1/22/2017 11:15:51 AM
  • Update: . 1/22/2017 11:15:51 AM
  • Update: . 1/22/2017 11:15:52 AM
  • Update: . 1/22/2017 11:15:52 AM
  • Update: . 1/22/2017 11:15:52 AM
  • Update: . 1/22/2017 11:15:52 AM
  • Update: . 1/22/2017 11:15:53 AM
  • Update: . 1/22/2017 11:15:53 AM
  • Update: . 1/22/2017 11:15:53 AM
  • Update: . 1/22/2017 11:15:53 AM
  • Update: . 1/22/2017 11:15:53 AM
  • Update: . 1/22/2017 11:15:54 AM
  • Update: . 1/22/2017 11:15:54 AM
  • Update: . 1/22/2017 11:15:54 AM
  • Update: . 1/22/2017 11:15:54 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Đức Vỹ
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Táo Dễ thương
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • NoRikAriN
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • thaiviptn1201
  • Minh Princess ^^
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Quên
  • chinh923
  • phanthilanphuong2011
  • Thùy Trang
  • maivyy
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Âm thanh trong vỏ ốc
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • Lầy's lội Family
  • caigihu123
  • FuYu
  • Tôi Tên "NHÁI"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • ¸.•´¯)© Gái'ss Lùn'ss ©.•´¯)
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Hoàng Yến
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • ๖ۣۜQueenღ
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • HMU-HY-18
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • ۞♠ξ__Judal__ζ♣۞
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜAnubis๖ۣ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • ProGK
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜEvilღ ๖ۣۜShadow
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • gphong
  • phng_pepsi
  • Young Wild and Free
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • johnnn509
  • __I Hate You__
  • Nguyễn Đức Minh
  • Ryo
  • max quý e gái
  • cụ nhỏ
  • Update
  • w
  • ♥ Sweet Cherry ♥
  • egaehaneya
  • Trangg"xxx Kiềuu"xxx
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • ntva
  • toilamothuyenthoai
  • DoTri69
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • thanhnga759
  • vannamlan72
  • tuantudeptrai2000
  • giangzany369
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • Update
  • nhansubbq
  • lê việt anh
  • huyenthanhut9
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • nhuhoangvo810