Phương pháp chung :

  Để chứng minh bất đẳng thức $f(x)>g(x)$ ta thực hiện :
+ Xét hàm số $h(x)=f(x)-g(x)$.
+ Tìm miền xác định của $h(x)$.
+ Tính đạo hàm cấp một, giải phương trình $h'(x)=0$. Tìm nghiệm.
+ Lập bảng biến thiên. Từ bảng biến thiên suy ra bất đẳng thức cần chứng minh.

  Các trường hợp :
+ Chứng minh $f(x) \ge A$ nghĩa là chứng minh $\min f(x) \ge A$, ở đây $A$ là hằng số.
+ Chứng minh $f(x) \le A$ nghĩa là chứng minh $\max f(x) \le A$, ở đây $A$ là hằng số.
+ Nếu phương trình $h'(x)=0$ không giải được thì ta tính đạo hàm cấp hai, ba đến khi nào xét dấu được thì ta dừng.

Ví dụ $1.$ Chứng minh bất đẳng thức :
                            $\displaystyle \sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4} \le 2                  \forall x \in [-1, 1]$
Lời giải :
Xét hàm số $f(x)=\displaystyle \sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4}$ trên $[-1, 1]$.
Ta có :
     $f'(x)=\displaystyle -\frac{1}{2\sqrt{1-x}}+ \frac{1}{2\sqrt{1+x}}+\frac{x}{2}=\frac{x\sqrt{1-x^2}+\sqrt{1-x}-\sqrt{1+x}}{2\sqrt{1-x^2}}$
     $f'(x)=0\Leftrightarrow x\sqrt{1-x^2}=\sqrt{1+x}-\sqrt{1-x}=0\Rightarrow x^2(1-x^2)=2-2\sqrt{1-x^2}           (1)$
Đặt $t=\sqrt{1-x^2}    (t \ge 0) \Rightarrow x^2=1-t^2$
PT $(1)\Leftrightarrow (1-t^2)t=2(1-t)\Leftrightarrow (1-t)(t^2+t-2)=0\Rightarrow t=1\Rightarrow x=0$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  & -1 & \; & \; & 0 & \; & \; &  1\\
\hline
f^\prime(x) & \;  & +  & \; & 0 & \; & - & 0 \\
\hline
\;  & \; & \; & \; & \;  2  \\
f(x) & \; & \nearrow  &  \; & \; & \; & \searrow & \;  \\
\quad &\sqrt{2}+\frac{1}{4} & \; & \; & \; & \; & \: &  \sqrt{2}+\frac{1}{4}
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(x) \le 2       \forall x \in [-1, 1]$.
Từ đó có điều phải chứng minh.

Ví dụ $2.$ Chứng minh bất đẳng thức :
                            $\displaystyle \arctan x -\frac{\pi}{4} \ge \ln (1+x^2) - \ln 2                  \forall x \in \left[ {\frac{1}{2}, 1} \right]$
Lời giải :
Bất đẳng thức cần chứng minh tương đương với :
$\displaystyle \arctan x -\ln (1+x^2) \ge  \frac{\pi}{4}- \ln 2$
Xét hàm số :  $f(x)=\arctan x -\ln (1+x^2)$  với   $x \in \left[ {\frac{1}{2}, 1} \right]$
Ta có :
               $\displaystyle f'(x)=\frac{1}{1+x^2}-\frac{2x}{1+x^2}=\frac{1-2x}{1+x^2}$
               $\displaystyle f'(x)=0\Leftrightarrow 1-2x=0\Leftrightarrow x=\frac{1}{2}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  & \frac{1}{2} & \; & \;  & \; & 1\\
\hline
f^\prime(x) & 0 & \;  & -  \\
\hline
\;  & \; & \; & \; & \; & \; &   \\
f(x) & \;  &  \; & \searrow & \; & \;  & \;  \\
\quad  & \; & \; & \; & \; &  \frac{\pi}{4}- \ln2
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(x) \ge \frac{\pi}{4}- \ln2       \forall x \in  \left[ {\frac{1}{2}, 1} \right]$.
Từ đó có điều phải chứng minh.

   Tuy nhiên, việc áp dụng đạo hàm để chứng minh một bất đẳng thức mà hàm $f(x)$ đã có sẵn trong bất đẳng thức thì chưa quá khó khăn. Vấn đề đặt ra ở đây là phải biết ứng dụng đạo hàm để chứng minh những bất đẳng thức mà ta tự tìm ra hàm số.
   Việc tìm ra một hàm số để xét là phải dựa vào đặc tính của từng bất đẳng thức. Để cụ thể ta xét các ví dụ sau :

Ví dụ $3.$ Cho các số dương $a, b, c$ thỏa mãn $a^2+b^2+c^2=1$
Chứng minh rằng : $\displaystyle \frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{b^2+a^2} \ge \frac{3\sqrt{3}}{2}$
Lời giải :
Từ giả thiết $a^2+b^2+c^2=1\Rightarrow \begin{cases}b^2+c^2=1-a^2 \\ a^2+c^2=1-b^2\\a^2+b^2=1-c^2 \\0< a, b, c <1\end{cases}$
Như vậy BĐT cần chứng minh tương đương với
       $\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}(a^2+b^2+c^2)$
Xét hàm số : $f(x)=\frac{x}{1-x^2}-\frac{3\sqrt{3}}{2}x^2    ,   0<x<1$
Ta sẽ chứng minh $f(x) \ge 0$. Thật vậy,
$f(x) \ge 0 \Leftrightarrow \frac { x }{ 1-{ x }^{ 2 } } \ge \frac { 3\sqrt { 3 }  }{ 2 }x^2 \Leftrightarrow \frac { 1 }{ x\left( 1-{ x }^{ 2 } \right)  } \ge \frac { 3\sqrt { 3 }  }{ 2 } \Leftrightarrow x\left( 1-{ x }^{ 2 } \right) \le \frac{ 2 }{ 3\sqrt { 3 }  } $
Đặt $g(x) = x-x^3$  với $x \in (0,1)$
       $g'(x)=1-3x^2;   g'(x)=0\Leftrightarrow x=\frac{1}{\sqrt{3}}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  &0 & \; & \; & \frac{1}{\sqrt{3}} & \; & \; &  1\\
\hline
g^\prime(x) & \;  & \; & +  & 0 \; & \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   \frac{ 2 }{ 3\sqrt { 3 }  }   \\
g(x) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad &0& \; & \; & \; & \; & \: &  0
\end{array}\]
Từ bảng biến thiên ta suy ra   $g(x) \le \frac{ 2 }{ 3\sqrt { 3 }  }  \Leftrightarrow f(x) \ge 0\Leftrightarrow \frac{x}{1-x^2} \ge \frac{3\sqrt{3}}{2}x^2$.
Lần lượt thay $x$ bởi $a, b, c$ ta được :
$\begin{cases}\frac{a}{1-a^2} \ge \frac{3\sqrt{3}}{2}a^2 \\ \frac{b}{1-b^2} \ge \frac{3\sqrt{3}}{2}b^2\\\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}c^2 \end{cases}\Rightarrow \frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}(a^2+b^2+c^2)$
Từ đây có điều phải chứng minh.

Ví dụ $4.$ Cho $\triangle ABC$ nhọn. Chứng minh rằng :
                     $\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 \pi  $
Lời giải :
Bất đẳng thức cần chứng minh tương đương với :
                     $\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 (A+B+C)  $                 
 Xét hàm số : $f(x)=\sin x + \tan x -2x $  với  $0<x<\frac{\pi}{2}$
Ta sẽ chứng minh $f(x) > 0$. Thật vậy,
         $f'(x)=\cos x + \frac{1}{\cos^2 x}-2$
 Vì $0<x<\frac{\pi}{2}\Rightarrow 0< \cos x < 1\Rightarrow \cos x > \cos^2 x$
 $\Rightarrow f'(x) > \cos^2 x + \frac{1}{\cos^2 x}-2 \underbrace{\ge}_{\text{BĐT Cô-si}} 2\sqrt{ \cos^2 x . \frac{1}{\cos^2 x}}-2 = 0        \forall x \in \left (0,\frac{\pi}{2} \right )$
 $\Rightarrow f'(x) >0  \forall x \in \left (0,\frac{\pi}{2} \right )\Rightarrow f(x)$ đồng biến trên $ \left (0,\frac{\pi}{2} \right )$
 $\Rightarrow f(x) > f(0)=0\Rightarrow \sin x + \tan x >2x$
Lần lượt thay $x$ bởi $a, b, c$ ta được :
$\begin{cases}\sin A + \tan A >2A \\ \sin B + \tan B >2B\\\sin C + \tan C >2C \end{cases}\Rightarrow\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 (A+B+C) $
Từ đây có điều phải chứng minh.

Ví dụ $5.$ Chứng minh rằng với mọi $x \in \mathbb{R}$ thì :
                                   $\sin x + \sin 2x + \sin 3x < \frac{3\sqrt{3}}{2}$
Lời giải :
Theo BĐT Bunhiacopsky ta có :
     $\sin x + \sin 2x + \sin 3x = 2\sin 2x \cos x + 2\cos x \sin x \le 2\sqrt{\sin^2 2x+ \cos^2 x}$
$\Rightarrow \sin x + \sin 2x + \sin 3x \le 2\sqrt{1-\cos^2 2x+ \frac{1+ \cos 2x}{2}}=2\sqrt{-\cos^2 2x+\frac{1}{2}\cos 2x +\frac{3}{2}}$
Đặt $t= \cos 2x$ với $-1 \le t \le 1$
Xét hàm : $f(t)=-t^2+\frac{1}{2}t+\frac{3}{2}$
                  $f'(t)=-2t+\frac{1}{2};           f'(t)=0\Leftrightarrow t=\frac{1}{4}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
t  &-1 & \; & \; & \frac{1}{4} & \; & \; &  1\\
\hline
f^\prime(t) & \;  & \; & +  & 0 \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   \frac{ 25 }{16 }   \\
f(t) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad &0& \; & \; & \; & \; & \: &  0
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(t) \le \max_{[-1, 1]} f(t) =\frac{ 25 }{16 }$.
$\Rightarrow \sin x + \sin 2x + \sin 3x \le 2\sqrt{f(t)}=\frac{5}{2}<\frac{3\sqrt{3}}{2}$
Vậy : $\sin x + \sin 2x + \sin 3x < \frac{3\sqrt{3}}{2}$ (đpcm).

Ví dụ $6.$ Chứng minh rằng với mọi $x \in  \mathbb{R}$ ta luôn có :
                                                       $\displaystyle 2^{\displaystyle|\sin x|}+ 2^{\displaystyle|\cos x|} \ge 3               (1)$
Lời giải :
Đặt $t=|\sin x|$, điều kiện : $0\le t \le 1\Rightarrow |\cos x|=\sqrt{1-t^2}$
BĐT $(1)$ trở thành :   $2^{\displaystyle t}+ 2^{\displaystyle \sqrt{1-t^2}} \ge 3 $
Xét hàm số : $f(t)=2^{\displaystyle t}+ 2^{\displaystyle \sqrt{1-t^2}}$  với $0\le t \le 1$
                        $f'(t)=\displaystyle 2^t\ln 2 - \displaystyle\frac{t}{\sqrt{1-t^2}}2^{\displaystyle \sqrt{1-t^2}}\ln 2=t.\ln 2 \left ( \frac{2^t}{t} -\frac{2^{\displaystyle \sqrt{1-t^2}}}{\sqrt{1-t^2}}\right )$
Lại xét hàm : $g(u)=\frac{2^u}{u} $ với $0\le u\le 1$
                        $g'(u)=\displaystyle \frac{u.2^u\ln 2-2^u}{u^2}=\frac{2^u}{u^2}\left ( u\ln 2 -1 \right )<0    \forall 0\le u\le 1$
$\Rightarrow g(u)$ là hàm giảm trên $[0; 1]$
$\Rightarrow f'(t)=0 \Leftrightarrow g(t)=g\left (\sqrt{1-t^2} \right )\Leftrightarrow t=\sqrt{1-t^2}\Leftrightarrow t=\frac{1}{\sqrt{2}}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
t  &0& \; & \; & \frac{1}{\sqrt{2}} & \; & \; &  1\\
\hline
f^\prime(t) & \;  & \; & +  & 0 \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   f_{\max}   \\
f(t) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad & 3 & \; & \; & \; & \; & \: &  3
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(t) \ge 3     \forall t \in  \left[ {0, 1} \right]$.
Từ đó có điều phải chứng minh.

Ví dụ $7.$ (Đại học Khối $A-2012$) Cho các số thực $x, y, z$ thỏa mãn điều kiện $x+y+z=0$. Chứng minh rằng :
                         $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|}-\sqrt{6x^2+6y^2+6x^2} \ge 3$
Lời giải :
Trước hết ta sẽ chứng minh :  $3^t \ge t+1   \forall t \ge 0               (*)$
Xét hàm $f(t)=3^t-t-1$  trên $[0, +\infty)$
                $f'(t)=3^t\ln 3 -1 > 0            \forall t \ge 0 $
$\Rightarrow f(t)$ là hàm tăng trên $[0, +\infty)$
 $\Rightarrow f(t) \ge f(0)=0\Rightarrow  (*)$ được chứng minh.
 Áp dụng $(*)$, ta có : $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|} \ge 3 + |x-y|+|y-z|+|z-x|$
 Sử dụng BĐT quen thuộc  $|a|+|b| \ge |a+b|$, ta có :
$\left (|x-y|+|y-z|+|z-x| \right )^2=|x-y|^2+|y-z|^2+|z-x|^2+|x-y|\left ( |y-z|+|z-x|\right )+|y-z|\left ( |z-x|+|x-y| \right )+|z-x|\left (| x-y|+|y-z| \right ) \ge 2\left (|x-y|^2+|y-z|^2+|z-x|^2 \right )$
Do đó :
$|x-y|+|y-z|+|z-x| \ge \sqrt{2\left (|x-y|^2+|y-z|^2+|z-x|^2 \right )}=\sqrt{6x^2+6y^2+6x^2-2(x+y+z)^2}$
Mà $x+y+z=0$, suy ra $|x-y|+|y-z|+|z-x| \ge\sqrt{6x^2+6y^2+6x^2}$
 Suy ra  $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|}-\sqrt{6x^2+6y^2+6x^2} \ge 3$  (đpcm).

 BÀI TẬP ÁP DỤNG

 Bài $1.$
Chứng minh rằng : $\forall x >0$ thì $x- \displaystyle \frac{x^3}{6} < \sin x$

 Bài $2.$ Chứng minh rằng : $\forall x >1$ thì $x-1 > \ln x > 1 - \displaystyle \frac{1}{x}$

 Bài $3.$ Cho $0<a<b<\pi$. Chứng minh rằng :  $a\sin a - b\sin b >2\left ( \cos b - \cos a \right )$

 Bài $4.$ Cho $0 \le x \le \frac{\pi}{2}$. Chứng minh rằng : $x\cos x < \displaystyle \frac{\pi^2}{16} $

Bài $5.$ Cho hai số dương thỏa mãn $x^2+y^2 \le 2$. Chứng minh rằng : $x^3+y^3 \le 2$

 Bài $6.$ (Đại học khối $B-2012$) Cho các số thực $x, y, z$ thỏa mãn các điều kiện $x+y+z=0$ và $x^2+y^2+z^2=1$.
 Chứng minh rằng :  $x^5+y^5+z^5 \le \displaystyle \frac{5\sqrt{6}}{36}$

 Bài $7.$ (Đại học khối $D-2012$) Cho các số thực $x, y$ thỏa mãn điều kiện $(x-4)^2+(y-4)^2+2xy \le 32$.
 Chứng minh rằng :  $x^3+y^3+3(xy-1)(x+y-2) \ge \displaystyle \frac{17-5\sqrt{5}}{4}$.

Thẻ

Lượt xem

14230
Chat chit và chém gió
  • hoangduong: sad 6/26/2019 11:42:28 PM
  • hoangduong: sad 6/26/2019 11:42:31 PM
  • hoangduong: sad 6/26/2019 11:42:34 PM
  • hoangduong: crying 6/26/2019 11:42:41 PM
  • hoangduong: broken_heart 6/26/2019 11:42:44 PM
  • hoangduong: broken_heart 6/26/2019 11:42:47 PM
  • hoangduong: sad 6/26/2019 11:42:51 PM
  • hoangduong: happy 6/26/2019 11:42:55 PM
  • hoangduong: crying 6/26/2019 11:43:00 PM
  • hoangduong: crying 6/26/2019 11:43:07 PM
  • hoangduong: crying 6/26/2019 11:43:12 PM
  • hoangduong: crying 6/26/2019 11:43:15 PM
  • hoangduong: crying 6/26/2019 11:43:19 PM
  • hoangduong: crying 6/26/2019 11:43:22 PM
  • hoangduong: broken_heart 6/26/2019 11:43:25 PM
  • hoangduong: broken_heart 6/26/2019 11:43:28 PM
  • hoangduong: sad 6/26/2019 11:43:32 PM
  • hoangduong: broken_heart 6/26/2019 11:43:36 PM
  • hoangduong: broken_heart 6/26/2019 11:43:39 PM
  • hoangduong: sad 6/26/2019 11:43:42 PM
  • hoangduong: sad 6/26/2019 11:43:45 PM
  • hoangduong: sad 6/26/2019 11:43:49 PM
  • hoangduong: crying 6/26/2019 11:43:53 PM
  • hoangduong: crying 6/26/2019 11:43:58 PM
  • hoangduong: crying 6/26/2019 11:44:03 PM
  • hoangduong: crying 6/26/2019 11:44:06 PM
  • hoangduong: sad 6/26/2019 11:44:11 PM
  • hoangduong: broken_heart 6/26/2019 11:44:15 PM
  • hoangduong: crying 6/26/2019 11:44:18 PM
  • ๖ۣۜBossღ: broken_heart 6/27/2019 7:22:45 PM
  • Vinastudy: rolling_on_the_floor 6/28/2019 6:47:52 PM
  • Vinastudy: các bn ơi làm sao để đổi ảnh nền vậy 6/28/2019 6:48:15 PM
  • puu: vắng quá 6/28/2019 9:29:16 PM
  • kunkullpham: hello 6/29/2019 9:40:49 PM
  • ❦ : . 6/30/2019 8:06:01 AM
  • ❦ : . 6/30/2019 8:06:05 AM
  • ❦ : . 6/30/2019 8:06:06 AM
  • ❦ : . 6/30/2019 8:06:06 AM
  • ❦ : . 6/30/2019 8:06:07 AM
  • ❦ : . 6/30/2019 8:06:07 AM
  • ❦ : . 6/30/2019 8:06:07 AM
  • ❦ : . 6/30/2019 8:06:08 AM
  • ❦ : . 6/30/2019 8:06:08 AM
  • ❦ : . 6/30/2019 8:06:08 AM
  • ❦ : . 6/30/2019 8:06:09 AM
  • ❦ : . 6/30/2019 8:06:09 AM
  • ❦ : . 6/30/2019 8:06:09 AM
  • ❦ : . 6/30/2019 8:06:10 AM
  • ❦ : . 6/30/2019 8:06:10 AM
  • ❦ : . 6/30/2019 8:06:10 AM
  • ❦ : . 6/30/2019 8:06:11 AM
  • ❦ : . 6/30/2019 8:06:11 AM
  • ❦ : . 6/30/2019 8:06:11 AM
  • ❦ : . 6/30/2019 8:06:12 AM
  • ❦ : . 6/30/2019 8:06:12 AM
  • ❦ : . 6/30/2019 8:06:12 AM
  • ❦ : . 6/30/2019 8:06:13 AM
  • ❦ : . 6/30/2019 8:06:13 AM
  • ❦ : . 6/30/2019 8:06:13 AM
  • ❦ : . 6/30/2019 8:06:14 AM
  • ❦ : . 6/30/2019 8:06:14 AM
  • ❦ : . 6/30/2019 8:06:14 AM
  • ❦ : . 6/30/2019 8:06:15 AM
  • ❦ : . 6/30/2019 8:06:15 AM
  • ❦ : . 6/30/2019 8:06:15 AM
  • ❦ : . 6/30/2019 8:06:16 AM
  • ❦ : . 6/30/2019 8:06:16 AM
  • ❦ : . 6/30/2019 8:06:16 AM
  • ❦ : . 6/30/2019 8:06:17 AM
  • ❦ : . 6/30/2019 8:06:17 AM
  • ❦ : . 6/30/2019 8:06:17 AM
  • ❦ : . 6/30/2019 8:06:18 AM
  • ❦ : . 6/30/2019 8:06:18 AM
  • ❦ : . 6/30/2019 8:06:18 AM
  • ❦ : . 6/30/2019 8:06:19 AM
  • ❦ : . 6/30/2019 8:06:20 AM
  • ❦ : . 6/30/2019 8:06:20 AM
  • ❦ : . 6/30/2019 8:06:20 AM
  • ❦ : . 6/30/2019 8:06:20 AM
  • ❦ : . 6/30/2019 8:06:21 AM
  • ❦ : . 6/30/2019 8:06:21 AM
  • ❦ : . 6/30/2019 8:06:22 AM
  • ❦ : . 6/30/2019 8:06:24 AM
  • ❦ : . 6/30/2019 8:06:24 AM
  • ❦ : .. 6/30/2019 8:06:25 AM
  • ❦ : . 6/30/2019 8:06:26 AM
  • ❦ : . 6/30/2019 8:06:26 AM
  • ❦ : . 6/30/2019 8:06:27 AM
  • ❦ : . 6/30/2019 8:06:27 AM
  • ❦ : . 6/30/2019 8:06:28 AM
  • ❦ : . 6/30/2019 8:06:29 AM
  • ❦ : .. 6/30/2019 8:06:29 AM
  • ❦ : . 6/30/2019 8:06:30 AM
  • ❦ : .... 6/30/2019 8:06:31 AM
  • ๖ۣۜBossღ: broken_heart 6/30/2019 6:27:05 PM
  • ๖ۣۜTQT☾♋☽: big_grin 7/11/2019 9:32:49 AM
  • 1417169: ey 7/14/2019 11:36:27 AM
  • tieumithu: có mấy đứa z nè 7/14/2019 11:39:39 AM
  • 255htp: . 7/18/2019 9:30:21 PM
  • ๖ۣۜBossღ: broken_heart 7/19/2019 8:04:57 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • ahihi
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜTQT☾♋☽
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo9119* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minh
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • tranhai98
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Trang
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • ☼SunShine❤️
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜBossღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • B҉ãO҉-t҉ố҉
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Hạ Vân
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • ☆☆Lãnh Hoàng Băng Ngọc ☆☆
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜNắng(M)
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • ๖ۣۜNatsu
  • Băng
  • ๖ۣۜCold
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyendang241001
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Vũ Như Quỳnh
  • benganxd2509
  • pnt2912003
  • nhathan61
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Linh Lê Thùy
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • fbt1800555581
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • ๖ۣۜLãnh♌Băng ( ML)
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • Nguyen Le Na
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • Tuyết Nhi
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phúc Huy
  • Phùng THị Thu Hà
  • ๖ۣۜLãnh♌Huyết
  • ๖ۣۜNgược dòng thời gian
  • lehongminh22072001
  • Nguyễn Hồng Ngọc
  • ♓幸せ ♥╭╮♥ha ≧✯◡✯≦✌
  • admin
  • skud2003
  • Zidane
  • Cao Linh
  • Hạ Nhi
  • Kiệt2003
  • cuong3888684
  • Mây của trời cứ để gió cuốn đi
  • caodsao
  • le.tg.310314
  • hoa.khanh.lhyan2707
  • tuthaiduong012
  • aidhakfcgano1
  • hisname004
  • honhutlinh
  • let02hb
  • vohieutrung99
  • laitridung2004
  • nguyenthuhangtdvp
  • thulively
  • btquyen11a2
  • giangbap0388
  • trung3152003
  • ★F.29★