Trước hết ta nhắc lại công thức tính đạo hàm bằng định nghĩa :
\[f'(x_0)=\mathop {\lim }\limits_{x \to x_0}\displaystyle \frac{f(x)-f(x_0)}{x-x_0}\]
  Phương pháp này thường áp dụng đối với giới hạn có dạng  $\mathop {\lim }\limits_{x \to x_0}\displaystyle \frac{f(x)}{g(x)}$; trong đó $g'(x_0) \ne 0$, $g'(x_0)$ tồn tại hữu hạn và $f(x_0)=g(x_0)=0$, tức là dạng giới hạn $\frac{0}{0}$.
  Nếu giới hạn $\mathop {\lim }\limits_{x \to x_0}\displaystyle \frac{f(x)}{g(x)}$ thỏa mãn các điều kiện trên thì phương pháp này rất có hiệu quả và dễ thực hiện hơn nhiều so với các phương pháp bình thường như : phương pháp thêm bớt hạng tử, dùng biểu thức liên hợp, sử dụng các giới hạn lượng giác cơ bản.
  Ta sẽ cùng xét các ví dụ sau :

Ví dụ $1.$  Tính giới hạn sau
\[L=\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{x-\sin x}{x+\sin x}\]
Lời giải :

Đặt : $f(x)=x- \sin x$  thì  $f(0)=0$
và  $f'(x)=1- \cos x$ nên $f'(0)=0$

Đặt : $g(x)=x+ \sin x$  thì  $g(0)=0$
và  $g'(x)=1+ \cos x$ nên $g'(0)=2$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to 0} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{f(x)}{x}}{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{g(x)}{x}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{f(x)-f(0)}{x-0}}{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{g(x)-g(0)}{x-0}}=\displaystyle\frac{f'(0)}{g'(0)}=0$

Ví dụ $2.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to 2}\displaystyle \frac{\sqrt{1+x+x^2}-\sqrt{7+2x-x^2}}{x^2-2x}\]
Lời giải :

Đặt : $f(x)=\sqrt{1+x+x^2}-\sqrt{7+2x-x^2}$  thì  $f(2)=0$
và  $f'(x)=\displaystyle\frac{1+2x}{2\sqrt{1+x+x^2}}-\frac{1-x}{\sqrt{7+2x-x^2}}$ nên $f'(2)=\displaystyle\frac{5}{2\sqrt{7}}+\frac{1}{\sqrt{7}}=\frac{\sqrt{7}}{2}$

Đặt : $g(x)=x^2-2x$  thì  $g(0)=0$
và  $g'(x)=2x-2$ nên $g'(0)=2$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to 2} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 2}\displaystyle\frac{f(x)}{x-2}}{\mathop {\lim }\limits_{x \to 2}\displaystyle\frac{g(x)}{x-2}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 2}\displaystyle\frac{f(x)-f(2)}{x-2}}{\mathop {\lim }\limits_{x \to 2}\displaystyle\frac{g(x)-g(2)}{x-2}}=\displaystyle\frac{f'(2)}{g'(2)}=\frac{\sqrt{7}}{4}$

Ví dụ $3.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\]
Lời giải :

Đặt : $f(x)=\sqrt{5-x}-\sqrt[3]{x^2+7}$  thì  $f(1)=0$
và  $f'(x)=\displaystyle -\frac{1}{2\sqrt{5-x}}-\frac{2x}{3\sqrt[3]{\left ( x^2+7 \right )^2}}$ nên $f'(1)=\displaystyle-\frac{1}{4}-\frac{1}{6}=-\frac{5}{12}$

Đặt : $g(x)=x^2-1$  thì  $g(1)=0$
và  $g'(x)=2x$ nên $g'(1)=2$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to 1} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{f(x)}{x-1}}{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{g(x)}{x-1}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{f(x)-f(1)}{x-1}}{\mathop {\lim }\limits_{x \to1 }\displaystyle\frac{g(x)-g(1)}{x-1}}=\displaystyle\frac{f'(1)}{g'(1)}=-\frac{5}{24}$
Trong ví dụ này, nếu ta sử dụng phương pháp thêm bớt hạng tử và dùng biểu thức liên hợp thì thực hiện như sau :
$L=\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{\sqrt{5-x}-2+2-\sqrt[3]{x^2+7}}{x^2-1}$
    $=\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{\sqrt{5-x}-2}{x^2-1}+\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{2-\sqrt[3]{x^2+7}}{x^2-1}$
    $=\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{1-x}{(x^2-1)\left (\sqrt{5-x}+2 \right )}+\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{1-x^2}{(x^2-1)\left (4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left ( x^2+7 \right )^2} \right )}$
    $=\displaystyle-\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{1}{(x+1)\left (\sqrt{5-x}+2 \right )}\displaystyle-\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{1}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left ( x^2+7 \right )^2} }$
    $=-\frac{1}{8}-\frac{1}{12}=-\frac{5}{24}$

  Độc giả có thể tự đọc và suy ngẫm về những ưu điểm của từng phương pháp.  Và ví dụ tiếp theo đây sẽ minh họa thêm về tính hiệu quả của phương pháp dùng định nghĩa đạo hàm để tính giới hạn.

Ví dụ $4.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{\left ( x^3+2013 \right )\sqrt[5]{1-3x}-2013}{x}\]
Lời giải :

Đặt : $f(x)=\left ( x^3+2013 \right )\sqrt[5]{1-3x}-2013$  thì  $f(0)=0$
và  $f'(x)=\displaystyle 3x^2.\sqrt[5]{1-3x}-\frac{3(x^3+2013)}{5\sqrt[5]{(1-3x)^4}}$ nên $f'(0)=\displaystyle-\frac{6039}{5}$

Đặt : $g(x)=x$  thì  $g(0)=0$
và  $g'(x)=1$ nên $g'(0)=1$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to 0} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{f(x)}{x-0}}{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{g(x)}{x-0}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 0}\displaystyle\frac{f(x)-f(0)}{x-0}}{\mathop {\lim }\limits_{x \to0 }\displaystyle\frac{g(x)-g(0)}{x-0}}=\displaystyle\frac{f'(0)}{g'(0)}=-\frac{6039}{5}$
  Rõ ràng trong bài toán này ta sẽ rất khó định hướng được hướng làm nếu chỉ nghĩ đến các phương pháp quen thuộc.

Ví dụ $5.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to \frac{\pi}{3}}\displaystyle \frac{\tan^3 x-3\tan x}{\displaystyle\cos \left ( x+ \frac{\pi}{6} \right )}\]
Lời giải :

Đặt : $f(x)=\tan^3 x-3\tan x$  thì  $f(\frac{\pi}{3})=0$
và  $f'(x)=\displaystyle 3\tan^2 x . \frac{1}{\cos^2 x}-3.\frac{1}{\cos^2 x}$ nên $f'(\frac{\pi}{3})=24$

Đặt : $g(x)=\cos \left ( x+ \frac{\pi}{6} \right )$  thì  $g(\frac{\pi}{3})=0$
và  $g'(x)=-\sin \left ( x+ \frac{\pi}{6} \right )$ nên $g'(\frac{\pi}{3})=-1$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to \frac{\pi}{3}} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to \frac{\pi}{3}}\displaystyle\frac{f(x)}{x-\frac{\pi}{3}}}{\mathop {\lim }\limits_{x \to \frac{\pi}{3}}\displaystyle\frac{g(x)}{x-\frac{\pi}{3}}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to\frac{\pi}{3}}\displaystyle\frac{f(x)-f(\frac{\pi}{3})}{x-\frac{\pi}{3}}}{\mathop {\lim }\limits_{x \to\frac{\pi}{3} }\displaystyle\frac{g(x)-g(\frac{\pi}{3})}{x-\frac{\pi}{3}}}=\displaystyle\frac{f'(\frac{\pi}{3})}{g'(\frac{\pi}{3})}=-24$

Ví dụ $6.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to 1}\displaystyle \frac{ \displaystyle x^x-1}{x\ln x}\]
Lời giải :

Đặt : $f(x)=\displaystyle x^x-1=\displaystyle e^{ \displaystyle \ln x^x}-1=\displaystyle e^{\displaystyle x\ln x}-1$  thì  $f(1)=0$
và  $f'(x)=\displaystyle e^{x\ln x}\left (1+ \ln x \right )$ nên $f'(1)=\displaystyle 1$

Đặt : $g(x)=x\ln x$  thì  $g(1)=0$
và  $g'(x)=1+ \ln x$ nên $g'(1)=1$

Ta có :
$L=\displaystyle \mathop {\lim }\limits_{x \to 1} \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{f(x)}{x-1}}{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{g(x)}{x-1}}=\displaystyle \frac{\mathop {\lim }\limits_{x \to 1}\displaystyle\frac{f(x)-f(1)}{x-1}}{\mathop {\lim }\limits_{x \to1 }\displaystyle\frac{g(x)-g(1)}{x-1}}=\displaystyle\frac{f'(1)}{g'(1)}=1$

Ví dụ $7.$  Tính giới hạn sau
\[L=\displaystyle\mathop {\lim }\limits_{x \to +\infty}\displaystyle \left (1+\frac{2}{x} \right )^{\displaystyle 3x}\]
Lời giải :

Ta có :
$L=\displaystyle\mathop {\lim }\limits_{x \to +\infty}\displaystyle \left (1+\frac{2}{x} \right )^{\displaystyle 3x}=\displaystyle\mathop {\lim }\limits_{x \to +\infty}\displaystyle e^{\displaystyle 3x \ln \left (1+\frac{2}{x} \right )}=e^{L_1}$
Trong đó : $L_1=\displaystyle\mathop {\lim }\limits_{x \to +\infty}\displaystyle \displaystyle 3x \ln \left (1+\frac{2}{x} \right ) \underbrace{=}_{t=\frac{1}{x}}\displaystyle\mathop {\lim }\limits_{t \to 0}\displaystyle \displaystyle \frac{3\ln (1+2t)}{t}$
Đặt : $f(t)=\displaystyle 3\ln (1+2t)$ thì  $f(0)=0$
và  $f'(t)=\displaystyle \frac{6}{1+2t}$ nên $f'(0)=\displaystyle 6$
Đặt : $g(t)=t$  thì  $g(0)=0$
và  $g'(t)=1$ nên $g'(0)=1$
Ta có :
$L_1=\displaystyle \mathop {\lim }\limits_{t \to 0} \displaystyle \frac{f(t)}{g(t)}=\displaystyle \frac{\mathop {\lim }\limits_{t \to 0}\displaystyle\frac{f(t)}{t-0}}{\mathop {\lim }\limits_{t \to 0}\displaystyle\frac{g(t)}{t-0}}=\displaystyle \frac{\mathop {\lim }\limits_{t \to 0}\displaystyle\frac{f(t)-f(0)}{t-0}}{\mathop {\lim }\limits_{t\to0 }\displaystyle\frac{g(t)-g(0)}{t-0}}=\displaystyle\frac{f'(0)}{g'(0)}=6$
   Tóm lại $L=e^{L_1}=e^6$

BÀI TẬP ÁP DỤNG

    Tính các giới hạn sau bằng phương pháp dùng định nghĩa đạo hàm

$1.     L=\displaystyle\mathop {\lim }\limits_{x \to 8}\displaystyle \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$
$2.     L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{1-\sqrt{2x+1}+\sin x}{\sqrt{3x+4}-2-x}$
$3.     L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{1-4^x}{1-e^x}$
$4.     L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{\ln (x+1)}{x}$
$5.     L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \frac{e^x - 1}{x}$
$6      L=\displaystyle\mathop {\lim }\limits_{x \to a}\displaystyle \frac{a^x-x^a}{x-a}    (a>0)$
$7.     L=\displaystyle\mathop {\lim }\limits_{x \to 0}\displaystyle \left (\frac{x}{2} \right )^{\displaystyle \frac{1}{x-2}}$

 

Thẻ

Lượt xem

11249
Chat chit và chém gió
  • •♥• Hate You •♥•: k s cj3 ạg 2/20/2017 5:34:42 AM
  • •♥• Hate You •♥•: e bênh ai là quyền của e happy2/20/2017 5:34:53 AM
  • Tiểu Hi: chị thích em thảo à 2/20/2017 5:35:01 AM
  • Nhok Sam: nek sao lại đem chuyện of cj ra ns thế 2/20/2017 5:35:17 AM
  • phucpy2k: 2 2/20/2017 5:35:22 AM
  • •♥• Hate You •♥•: có j đâu cj3 2/20/2017 5:35:27 AM
  • Bất Cần Đời: ai ns đâu giang 2/20/2017 5:35:30 AM
  • Tiểu Hi: thôi chờ chị xíu chị có việc ddi 1 tí 2/20/2017 5:35:32 AM
  • •♥• Hate You •♥•: hjhj mơn cj Hi 2/20/2017 5:35:33 AM
  • •♥• Hate You •♥•: ukm 2/20/2017 5:35:39 AM
  • Bất Cần Đời: giang ơi e có đứng về phía a ko 2/20/2017 5:35:44 AM
  • phucpy2k: ... 2/20/2017 5:35:44 AM
  • Bất Cần Đời: thảo a dỗi r đấy 2/20/2017 5:35:52 AM
  • Nhok Sam: e đã đọc đc đâu 2/20/2017 5:35:54 AM
  • Bất Cần Đời: người ngoài còn thân hơn ae 2/20/2017 5:36:00 AM
  • Bất Cần Đời: ko cần đọc e về phía a nha 2/20/2017 5:36:13 AM
  • Nhok Sam: ukm đừng viết j nx để e đọc đã 2/20/2017 5:36:25 AM
  • Tiểu Hi: thảo 2/20/2017 5:36:27 AM
  • Nhok Sam: r ms quyết 2/20/2017 5:36:29 AM
  • •♥• Hate You •♥•: sad a3 dỗi e ? 2/20/2017 5:36:34 AM
  • •♥• Hate You •♥•: dạ cj 2/20/2017 5:36:39 AM
  • cao trí: ai nhớ trí nữa k 2/20/2017 5:36:45 AM
  • Tiểu Hi: chị em mình cùng 1 team nhỉ 2/20/2017 5:36:48 AM
  • •♥• Hate You •♥•: ukm winking 2/20/2017 5:36:58 AM
  • Bất Cần Đời: dỗi ko ns nữa 2/20/2017 5:37:18 AM
  • Tiểu Hi: thôi chờ chị xíu nha 2/20/2017 5:37:18 AM
  • duycnqd113: mấy bạn ở đâu 2/20/2017 5:37:21 AM
  • •♥• Hate You •♥•: ukm 2/20/2017 5:37:22 AM
  • Bất Cần Đời: dận ny luôn cả e gái 2/20/2017 5:37:23 AM
  • Bất Cần Đời: laughing 2/20/2017 5:37:27 AM
  • •♥• Hate You •♥•: tự hỏi , e gái có làm j sai đâu 2/20/2017 5:37:41 AM
  • •♥• Hate You •♥•: mà a3 giận 2/20/2017 5:37:49 AM
  • Bất Cần Đời: e gái pải đúng về phía a chứ 2/20/2017 5:38:21 AM
  • Nhok Sam: nek e ko đọc đc 2/20/2017 5:38:26 AM
  • Bất Cần Đời: s lị đứng về phía ny a hả 2/20/2017 5:38:29 AM
  • Bất Cần Đời: e cứ về phía a là đc 2/20/2017 5:38:36 AM
  • Bất Cần Đời: gọi ny là thảo chj 2/20/2017 5:38:45 AM
  • Nhok Sam: a2 có ny hả 2/20/2017 5:38:50 AM
  • Nhok Sam: ai z 2/20/2017 5:38:52 AM
  • •♥• Hate You •♥•: cj3 à 2/20/2017 5:38:55 AM
  • Nhok Sam: ns cho e nghe vs 2/20/2017 5:39:01 AM
  • Nhok Sam: sao e 2/20/2017 5:39:06 AM
  • •♥• Hate You •♥•: ny a2 của cj ở tương lai 2/20/2017 5:39:14 AM
  • •♥• Hate You •♥•: chứ cj Chi e hông có thik a3 laughing 2/20/2017 5:39:24 AM
  • •♥• Hate You •♥•: nên mắc mơ chi e về phe a 2/20/2017 5:39:35 AM
  • Nhok Sam: ủa z là sao 2/20/2017 5:39:41 AM
  • Nhok Sam: là a2 yêu đơn phương hả 2/20/2017 5:39:52 AM
  • •♥• Hate You •♥•: thôi , ng` đến sau k hiểu chuyện đâu ạ 2/20/2017 5:39:54 AM
  • •♥• Hate You •♥•: ukm hiểu r đó 2/20/2017 5:40:00 AM
  • Nhok Sam: là z à 2/20/2017 5:40:14 AM
  • Nhok Sam: úi a2 tội quá 2/20/2017 5:40:23 AM
  • •♥• Hate You •♥•: nừa 2/20/2017 5:40:24 AM
  • Nhok Sam: laughing 2/20/2017 5:40:33 AM
  • •♥• Hate You •♥•: đúng nhỉ a3 winking 2/20/2017 5:40:33 AM
  • dumplindumplin_: ủa các bạn ko học bài hả? sao onl nói chuyện suốt vậy? 2/20/2017 5:41:02 AM
  • Nhok Sam: r đọc xong r 2/20/2017 5:42:00 AM
  • phucpy2k: chỗ này chắc chém gió thôi @@ 2/20/2017 5:42:03 AM
  • Nhok Sam: a2 nhận vơ quá 2/20/2017 5:42:07 AM
  • •♥• Hate You •♥•: vơ va vơ vẩn vẫn vành vơ ( thơ tha thơ thẩn vẫn thành thơ ) 2/20/2017 5:42:58 AM
  • •♥• Hate You •♥•: laughing 2/20/2017 5:43:26 AM
  • dumplindumplin_: học bài đi các chế @@ tin nhắn cứ nhảy hoài tui ko tập trung đc 2/20/2017 5:43:38 AM
  • Nhok Sam: lại làm thơ 2/20/2017 5:43:42 AM
  • Bất Cần Đời: a chêu thui mà 2/20/2017 5:44:17 AM
  • •♥• Hate You •♥•: tắt trag chat đi sẽ k để ý nx 2/20/2017 5:44:21 AM
  • Bất Cần Đời: chứ tưởng lm ny a mà dễ à 2/20/2017 5:44:28 AM
  • •♥• Hate You •♥•: tự đại quá a3 2/20/2017 5:44:37 AM
  • Nhok Sam: nhớ a cx ns vs e z ko 2/20/2017 5:44:38 AM
  • •♥• Hate You •♥•: confused 2/20/2017 5:45:17 AM
  • Nhok Sam: này a2 2/20/2017 5:45:18 AM
  • •♥• Hate You •♥•: xấu hổ , trốn r 2/20/2017 5:45:28 AM
  • Nhok Sam: lại chờ.......... 2/20/2017 5:45:38 AM
  • Nhok Sam: nek bỏ qua cho a2 đó 2/20/2017 5:46:10 AM
  • Nhok Sam: ra đây đi 2/20/2017 5:46:16 AM
  • Tiểu Hi: hi mn.chi đã trở lại 2/20/2017 5:46:27 AM
  • •♥• Hate You •♥•: . đúng là ae bênh nhau 2/20/2017 5:46:28 AM
  • Bon Bon: he hâu 2/20/2017 5:46:34 AM
  • •♥• Hate You •♥•: z mà đã bỏ qua ùi hử 2/20/2017 5:46:35 AM
  • Bon Bon: he lâu 2/20/2017 5:46:43 AM
  • Nhok Sam: ukm 2/20/2017 5:46:44 AM
  • •♥• Hate You •♥•: hj Bon đẹp zai 2/20/2017 5:46:45 AM
  • Nhok Sam: ae tốt mà 2/20/2017 5:46:50 AM
  • Tiểu Hi: hi linh 2/20/2017 5:46:54 AM
  • •♥• Hate You •♥•: laughing 2/20/2017 5:46:58 AM
  • Bon Bon: chào thảo đz 2/20/2017 5:46:59 AM
  • Bon Bon: chào chi 2/20/2017 5:47:04 AM
  • Nhok Sam: chào bon 2/20/2017 5:47:09 AM
  • •♥• Hate You •♥•: e chưa mún đz 2/20/2017 5:47:11 AM
  • Bon Bon: chào nhóc 2/20/2017 5:47:20 AM
  • Nhok Sam: thảo đg đ ko 2/20/2017 5:47:25 AM
  • Bon Bon: a muốn đz 2/20/2017 5:47:36 AM
  • •♥• Hate You •♥•: tại bữa trc ai biểu cj kêu lần sau gọi là đz nên e ọi z 2/20/2017 5:47:43 AM
  • •♥• Hate You •♥•: s cj3 2/20/2017 5:47:46 AM
  • Bon Bon: rolling_on_the_floor 2/20/2017 5:47:47 AM
  • •♥• Hate You •♥•: đz để thả thính chứ j , bt ùi 2/20/2017 5:47:58 AM
  • Bon Bon: rolling_on_the_floor 2/20/2017 5:48:08 AM
  • Tiểu Hi: rolling_on_the_floor 2/20/2017 5:48:15 AM
  • Bon Bon: ko ko gọi a đi 2/20/2017 5:48:21 AM
  • Bon Bon: đừng gọi chị đz 2/20/2017 5:48:31 AM
  • Bon Bon: ko thả dk ghính h 2/20/2017 5:48:39 AM
  • Bon Bon: rolling_on_the_floor 2/20/2017 5:48:44 AM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Đức Vỹ
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • NO NAME
  • nguyenhuuminh22
  • =.=
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Táo Dễ thương
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • ๖ۣۜSầu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • tclsptk25
  • Confusion
  • vanhuydk
  • ko tên ko tuổi
  • hoanghangnga2000
  • thaiviptn1201
  • Minh Princess ^^
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Efforts
  • chinh923
  • phanthilanphuong2011
  • Thùy Trang
  • maivyy
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • ¸.•♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•.¸
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • Tôi Tên "NHÁI"
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • ¸.•´¯)© Gái'ss Lùn'ss ©.•´¯)
  • milodatnguyen
  • Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • ๖ۣۜQueenღ
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • HMU-HY-18
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • languegework
  • danius99qn
  • vananh
  • ۞♠ξ__Judal__ζ♣۞
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • TNNNDK
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜAnubis๖ۣ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • ProGK
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDämonღ
  • phucanhthien
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • 123
  • phng_pepsi
  • Young Wild and Free
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • johnnn509
  • •♥•
  • Nhok Sam
  • Nguyễn Đức Minh
  • Ryo
  • TN
  • cụ nhỏ
  • Update
  • w
  • Mãi là vk đáng ju của ck
  • egaehaneya
  • Trangg"xxx Kiềuu"xxx
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Karry Angel ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • ntva
  • toilamothuyenthoai
  • DoTri69
  • Bon Bon
  • bac1024578
  • sylik284
  • denxam123
  • nhat6pth
  • conheo12c6
  • BB
  • thanhnga759
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • ChoaN
  • Update
  • nhansubbq
  • Bất Cần Đời
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • •♥• Hate You •♥•
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • phanngocngoc12345
  • Can't Solve
  • tieuhame4444
  • TenshiBaka
  • math
  • tarrasqueaohk
  • duycnqd113
  • dumplindumplin_