PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ CÁCH GIẢI KHÔNG MẪU MỰC

A.PHƯƠNG PHÁP GIẢI
Một số bài toán về phương trình lượng giác mà cách giải tuỳ theo đặc thù của phương trình, chứ không nằm ở trong phương pháp đã nêu ở hầu hết các sách giáo khoa.
Một số phương trình lượng giác thể hiện tính không mẫu mực ở ngay dạng của chúng, nhưng cũng có những phương trình ta thấy dạng rất bình thường nhưng cách giải lại không mẫu mực.
Sau đây là những phương trình lượng giác có cách giải không mẫu mực thường gặp.

I.PHƯƠNG PHÁP TỔNG BÌNH PHƯƠNG
Phương pháp này nhằm biến đổi phương trình lượng giác về dạng một vế là tổng bình phương các số hạng (hay tổng các số hạng không âm) và vế còn lại bằng không và áp dụng tính chất:
${A^2} + {B^2} = 0 \Leftrightarrow \left\{ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.$
Bài 1. Giải phương trình:
$3{\tan ^2}x + 4{\sin ^2}x - 2\sqrt 3 \tan x - 4\sin x + 2 = 0$
GIẢI
$\begin{array}{l}
3{\tan ^2}x + 4{\sin ^2}x - 2\sqrt 3 \tan x - 4\sin x + 2 = 0\\
 \Leftrightarrow 3{\tan ^2}x - 2\sqrt 3 \tan x + 1 + 4{\sin ^2}x - 4\sin x + 1 = 0\\
 \Leftrightarrow {(\sqrt 3 \tan x - 1)^2} + {(2\sin x - 1)^2} = 0\\
 \Leftrightarrow \left\{ \begin{array}{l}
\sqrt 3 \tan x - 1 = 0\\
2\sin x - 1 = 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
\tan x = \frac{{\sqrt 3 }}{3}\\
\sin x = \frac{1}{2}
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{\pi }{6} + m\pi \\
x = \frac{\pi }{6} + 2n\pi
\end{array} \right.\left( {m,n \in Z} \right)
\end{array}$
ĐS: $x = \frac{\pi }{6} + 2k\pi $ $(k \in Z)$
II.PHƯƠNG PHÁP ĐỐI LẬP
Phương pháp này được xây dựng trên tính chất: Để giải phương trình $f(x) = g(x)$, ta có thể nghĩ đến việc chứng minh tồn tại A → R: $f(x) \ge A,\forall x \in (a,b)$ và $g(x) \le A,\forall x \in (a,b)$ thì khi đó:
$f(x) = g(x) \Leftrightarrow \left\{ \begin{array}{l}
f(x) = A\\
g(x) = A
\end{array} \right.$
Nếu ta chỉ có $f(x) > A$ và $g(x) < A$, $\forall x \in (a,b)$ thì kết luận phương trình vô ngiệm.
Bài 2. Giải phương trình:
${\cos ^5}x + {x^2} = 0$
GIẢI
${\cos ^5}x + {x^2} = 0 \Leftrightarrow {x^2} =  - {\cos ^5}x$
Vì $ - 1 \le \cos x \le 1$ nên $0 \le {x^2} \le 1 \Leftrightarrow  - 1 \le x \le 1$
mà $\left[ { - 1,1} \right] \subset \left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right) \Rightarrow \cos x > 0,\forall x \in \left[ { - 1,1} \right] \Rightarrow  - {\cos ^5}x < 0,\forall x \in \left[ { - 1,1} \right]$
Do ${x^2} > 0$ và $ - {\cos ^5}x < 0$ nên phương trình vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
Bài 3. Giải phương trình:
${\sin ^{1996}}x + {\cos ^{1996}}x = 1$ (1)

GIẢI
(1)    $ \Leftrightarrow {\sin ^{1996}}x + {\cos ^{1996}}x = {\sin ^2}x + {\cos ^2}x$
    $ \Leftrightarrow {\sin ^2}x({\sin ^{1994}}x - 1) = {\cos ^2}x(1 - {\cos ^{1994}}x)$ (2)
Ta thấy $\left\{ \begin{array}{l}
{\sin ^2}x \ge 0\\
{\sin ^{1994}}x \le 1
\end{array} \right. \Rightarrow {\sin ^2}x({\sin ^{1994}}x - 1) \le 0,\forall x$
Mà $\left\{ \begin{array}{l}
{\cos ^2}x \ge 0\\
1 - {\cos ^{1994}}x \ge 0
\end{array} \right. \Rightarrow {\cos ^2}x(1 - {\cos ^{1994}}x) \ge 0,\forall x$
Do đó (2)$ \Leftrightarrow \left\{ \begin{array}{l}
{\sin ^2}x({\sin ^{1994}}x - 1) = 0\\
{\cos ^2}x(1 - {\cos ^{1994}}x) = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
\sin x = 0\\
\sin x =  \pm 1
\end{array} \right.\\
\left[ \begin{array}{l}
\cos x = 0\\
\cos x =  \pm 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = m\pi \\
x = \frac{\pi }{2} + m\pi
\end{array} \right.\\
\left[ \begin{array}{l}
x = \frac{\pi }{2} + n\pi \\
x = n\pi
\end{array} \right.
\end{array} \right.(m,n \in Z)$
Vậy nghiệm của phương trình là: $x = k\frac{\pi }{2}(k \in Z)$
ĐS: $x = k\frac{\pi }{2}(k \in Z)$
Áp dụng phương pháp đối lập, ta có thể suy ra cách giải nhanh chóng những phương trình lượng giác ở các dạng đặc biệt dưới đây:
•    $\sin ax.\sin bx = 1 \Leftrightarrow \left[ \begin{array}{l}
 \left\{ \begin{array}{l}
 \sin ax = 1\\
 \sin bx = 1
\end{array} \right.\\
 \left\{ \begin{array}{l}
 \sin ax =  - 1\\
 \sin bx =  - 1
\end{array} \right.
\end{array} \right.$

•    $\sin ax.\sin bx = -1 \Leftrightarrow \left[ \begin{array}{l}
 \left\{ \begin{array}{l}
 \sin ax = 1\\
 \sin bx = -1
\end{array} \right.\\
 \left\{ \begin{array}{l}
 \sin ax =  - 1\\
 \sin bx = 1
\end{array} \right.
\end{array} \right.$

Cách giải tương tự cho các phương trình thuộc dạng:
$\begin{array}{l}
\cos ax.\cos bx = 1\\
\cos ax.\cos bx =-1\\
\sin ax.\cos bx = 1\\
\sin ax.\cos bx =-1
\end{array}$ 
III. PHƯƠNG PHÁP ĐOÁN NHẬN NGHIỆM VÀ CHỨNG MINH TÍNH DUY NHẤT CỦA NGHIỆM
Tuỳ theo dạng và điều kiện của phương trình, ta tính nhẩm một nghiệm của phương trình, sau đó chứng tỏ nghiệm này là duy nhất bằng một trong những cách thông sụng sau:
•    Dùng tính chất đại số
•    Áp dụng tính đơn điệu của hàm số
Phương trình $f(x) = 0$ có 1 nghiệm $x = \alpha  \in (a,b)$ và hàm $f$ đơn điệu trong $(a,b)$ thì $f(x) = 0$ có nghiệm duy nhất là $x = \alpha $.
Phương trình $f(x) = g(x)$ có 1 nghiệm $x = \alpha  \in (a,b)$, $f(x)$ tăng (giảm) trong $(a,b)$, $g(x)$ giảm (tăng) trong $(a,b)$ thì phương trình $f(x) = g(x)$ có nghiệm $x = \alpha $ là duy nhất.
Bài 4. Giải phương trình:
$\cos x = 1 - \frac{{{x^2}}}{2}$ với $x > 0$
GIẢI
Ta thấy ngay phương trình có 1 nghiệm $x = 0$.
Đặt $f(x) = \cos x + \frac{{{x^2}}}{2} - 1$ là biểu thức của hàm số có đạo hàm $f'(x) =  - \sin x + x > 0,\forall x > 0$ (vì $\left| x \right| > \left| {\sin x} \right|,\forall x$)
$ \Rightarrow $ Hàm $f$ luôn đơn điệu tăng trong $\left( {0, + \infty } \right)$
$ \Rightarrow $ $f(x) = 0$ có 1 nghiệm duy nhất trong $\left( {0, + \infty } \right)$
Vậy phương trình đã cho có 1 nghiệm duy nhất $x = 0$.

B.CÁC BÀI TOÁN CƠ BẢN

Bài 1: Giải phương trình:
${x^2} - 2x\cos x - 2\sin x + 2 = 0$ (1)
 Giải:
Ta có:
(1)$ \Leftrightarrow {x^2} - 2x\cos x + {\cos ^2}x + {\sin ^2}x - 2\sin x + 1 = 0$
$\begin{array}{l}
 \Leftrightarrow {(x - \cos x)^2} + {(\sin x - 1)^2} = 0\\
 \Leftrightarrow \left\{ \begin{array}{l}
x - \cos x = 0\\
\sin x - 1 = 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
\cos x = x\\
\sin x = 1
\end{array} \right.
\end{array}$
 Phương trình vô nghiệm.

Bài 2: Giải phương trình:
${\sin ^4}x + {\cos ^{15}}x = 1$
GIẢI
Ta có:   
$ \Leftrightarrow {\sin ^4}x + {\cos ^{15}}x = {\sin ^2}x + {\cos ^2}x$
$ \Leftrightarrow {\sin ^2}x({\sin ^2}x - 1) = {\cos ^2}x(1 - {\cos ^{13}}x)$ (1)
Vì ${\sin ^2}x({\sin ^2}x - 1) \le 0,\forall x$

Do đó (1)     $ \Leftrightarrow \left\{ \begin{array}{l}
{\sin ^2}x({\sin ^2}x - 1) = 0\\
{\cos ^2}x(1 - {\cos ^{13}}x) = 0
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
\sin x = 0\\
\sin x =  \pm 1
\end{array} \right.\\
\left[ \begin{array}{l}
\cos x = 0\\
\cos x = 1
\end{array} \right.
\end{array} \right.$
ĐS: $x = \frac{\pi }{2} + k\pi $ hay $x = 2k\pi $, $(k \in Z)$
C.CÁC BÀI TOÁN NÂNG CAO VÀ ĐỀ THI

Bài 3: Giải các phương trình:
1.    ${\sin ^4}x + {\cos ^4}(x + \frac{\pi }{4}) = \frac{1}{4}$ (1)
2.   ${(\tan x + \frac{1}{4}\cot x)^n} = {\cos ^n}x + {\sin ^n}x\,\,\,\,\,(n = 2,3,4,...)$
GIẢI
1. Ta có:
(1)    $ \Leftrightarrow \frac{{{{(1 - \cos 2x)}^2}}}{4} + \frac{{{{\left[ {1 + \cos (2x + \frac{\pi }{2})} \right]}^2}}}{4} = \frac{1}{4}$
        $ \Leftrightarrow {(1 - \cos 2x)^2} + {(1 - \sin 2x)^2} = 1$
        $\begin{array}{l}
 \Leftrightarrow \cos 2x + \sin 2x = 1\\
 \Leftrightarrow \cos (2x - \frac{\pi }{4}) = \frac{{\sqrt 2 }}{2}
\end{array}$
        $ \Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \frac{\pi }{4} + k\pi
\end{array} \right.(k \in Z)$
2.Với điều kiện $x \ne k\frac{\pi }{2}$ ta có $\tan x$ và $\cot x$ luôn cùng dấu nên:
$\left| {\tan x + \frac{1}{4}\cot x} \right| = \left| {\tan x} \right| + \left| {\frac{1}{4}\cot x} \right| \ge 2\sqrt {\left| {\tan x \cdot \frac{1}{4}\cot x} \right|}  = 1 \Rightarrow {\left| {\tan x + \frac{1}{4}\cot x} \right|^n} \ge 1$
Dấu "=" xảy ra $ \Leftrightarrow \left| {\tan x} \right| = \left| {\frac{1}{4}\cot x} \right| \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \tan x =  \pm \frac{1}{2}$
•    Với $n = 2$: phương trình ${\left( {\tan x + \frac{1}{4}\cot x} \right)^2} = 1$ có nghiệm cho bởi:
$\tan x =  \pm \frac{1}{2} \Leftrightarrow x =  \pm \arctan \frac{1}{2} + k\pi (k \in Z)$
•    Với $n \in Z,n > 2$ thì:
${\cos ^n}x + {\sin ^n}x \le {\cos ^2}x + {\sin ^2}x = 1$
Dấu bằng xảy ra $ \Leftrightarrow \left[ \begin{array}{l}
x = k\frac{\pi }{2}\;khi\;n = 2m\\
x = 2k\pi \;hay\;x = \frac{\pi }{2} + 2k\pi \;khi\;n = 2m + 1
\end{array} \right.\quad (k,m \in Z)$
(đều không thoả mãn điều kiện $x \ne k\frac{\pi }{2}$ của phương trình)
Vậy với $n > 2,n \in Z$ thì phương trình vô nghiệm.
ĐS:  $x =  \pm \arctan \frac{1}{2} + k\pi (k \in Z)$
Bài 4: Giải phương trình:
$\cos x\sqrt {\frac{1}{{\cos x}} - 1}  + \cos 3x\sqrt {\frac{1}{{\cos 3x}} - 1}  = 1$ (1)

GIẢI
Điều kiện: $\left\{ \begin{array}{l}
\cos x > 0\\
\cos 3x > 0
\end{array} \right.$
Khi đó (1) $ \Leftrightarrow \sqrt {\cos x - {{\cos }^2}x}  + \sqrt {\cos 3x - {{\cos }^2}3x}  = 1$
Vì ${a^2} - a + \frac{1}{4} = {(a - \frac{1}{2})^2} \ge 0 \Rightarrow a - {a^2} \le \frac{1}{4}$
Do đó $\cos x - {\cos ^2}x \le \frac{1}{4}$ và $\cos 3x - {\cos ^2}3x \le \frac{1}{4}$ $ \Rightarrow \sqrt {\cos x - {{\cos }^2}x}  \le \frac{1}{2}\;v\`a \;\sqrt {\cos 3x - {{\cos }^2}3x}  \le \frac{1}{2}$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}{l}
\cos x - {\cos ^2}x = \frac{1}{4}\\
\cos 3x - {\cos ^2}3x = \frac{1}{4}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\cos x = \frac{1}{2}\\
\cos 3x = \frac{1}{2}
\end{array} \right. \Leftrightarrow x \in \emptyset $
Vậy phương trình (1) vô nghiệm.
 D.CÁC BÀI TẬP ĐỀ NGHỊ

Bài 1: Giải phương trình:
${\sin ^3}x + {\cos ^3}x = 2 - {\sin ^4}x$
HƯỚNG DẪN
$\begin{array}{l}
{\sin ^3}x \le {\sin ^2}x\;,\forall x\\
{\cos ^3}x \le {\cos ^2}x\;,\forall x\\
 \Rightarrow {\sin ^3}x + {\cos ^3}x \le 1\;,\forall x\\
2 - {\sin ^4}x \ge 1\;,\forall x
\end{array}$
Vậy phương trình tương đương: $\left\{ \begin{array}{l}
{\sin ^3}x + {\cos ^3}x = 1\\
2 - {\sin ^4}x = 1
\end{array} \right.$
ĐS $x = \frac{\pi }{2} + 2k\pi \;(k \in Z)$

Bài 2: Giải phương trình:
$\sin x + \tan x - 2x = 0$ với $0 \le x \le \frac{\pi }{2}$
HƯỚNG DẪN
Dễ thấy phương trình có 1 nghiệm $x = 0$
Đặt $f(x) = \sin x + \tan x - 2x$ liên tục trên $\left[ {0;\frac{\pi }{2}} \right)$
Có đạo hàm: $f'(x) = \frac{{(\cos x - 1)({{\cos }^2}x - \cos x - 1)}}{{{{\cos }^2}x}} \ge 0\,,\forall x \in \left[ {0;\frac{\pi }{2}} \right)$ do $\frac{{1 - \sqrt 5 }}{2} < 0 \le \cos x \le 1 < \frac{{1 + \sqrt 5 }}{2} \Rightarrow {\cos ^2}x - \cos x - 1 < 0$
$ \Rightarrow f$ đơn điệu tăng trên $\left[ {0;\frac{\pi }{2}} \right)$

Bài 3: Giải phương trình:
${\left( {\cos 4x - \cos 2x} \right)^2} = 5 + \sin 3x$
ĐS $x = \frac{\pi }{2} + 2k\pi \,(k \in Z)$

Bài 4: Giải phương trình:
${\cos ^4}x - {\sin ^4}x = \left| {\cos x} \right| + \left| {\sin x} \right|$
ĐS $x = k\pi \,(k \in Z)$

Bài 5: Giải phương trình:
${x^2} - 2\sin xy + 1 = 0$
ĐS $\left\{ \begin{array}{l}
x = 1\\
y = \frac{\pi }{2} + 2k\pi
\end{array} \right.$    hay    $\left\{ \begin{array}{l}
x =  - 1\\
y = \frac{\pi }{2} + 2k\pi
\end{array} \right.$   $(k \in Z)$ 

Thẻ

Lượt xem

11103
Chat chit và chém gió
  • Mặc Uyên:1/22/2018 9:52:24 PM
  • Phùng THị Thu Hà: dạ 1/22/2018 9:52:37 PM
  • Vietha2004: Em thấy zui mà cj 1/22/2018 9:53:17 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: bà L 1/22/2018 9:53:17 PM
  • Mặc Uyên: sao ô 1/22/2018 9:53:48 PM
  • Quỳnh Aka: raised_eyebrows 1/22/2018 9:53:48 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: sao kêu ko quen tui 1/22/2018 9:54:30 PM
  • Vietha2004: doh 1/22/2018 9:55:14 PM
  • Phùng THị Thu Hà: straight_face 1/22/2018 9:56:11 PM
  • Vietha2004: Mn đâu cả r 1/22/2018 9:57:28 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: a đây 1/22/2018 9:57:36 PM
  • KTT: hú mn 1/22/2018 9:58:56 PM
  • KTT: laughing 1/22/2018 9:59:03 PM
  • Vietha2004: Chào ch trang 1/22/2018 9:59:31 PM
  • Vietha2004: Chán quá 1/22/2018 10:00:01 PM
  • ST: ... 1/22/2018 10:00:11 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chào trang 1/22/2018 10:00:17 PM
  • KTT: chào e hàbig_hug 1/22/2018 10:00:19 PM
  • KTT: chào a S 1/22/2018 10:00:23 PM
  • Vietha2004: Hi ...a sang 1/22/2018 10:00:25 PM
  • KTT: chào a Đlaughing 1/22/2018 10:00:30 PM
  • Vietha2004: ...haiz chán quá 1/22/2018 10:00:51 PM
  • Vietha2004: Chẳng vui nữa tgiếu cj lan vs cj thảo 1/22/2018 10:01:19 PM
  • Vietha2004: Thiếu 1/22/2018 10:01:24 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: ukm 1/22/2018 10:01:50 PM
  • Vietha2004: A đạt thấy cj nga đâu k ạ 1/22/2018 10:02:01 PM
  • Vietha2004: A đạt ơi 1/22/2018 10:04:18 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: a ko e 1/22/2018 10:05:14 PM
  • Vietha2004: Dạ 1/22/2018 10:05:22 PM
  • Vietha2004: Pp mn 1/22/2018 10:05:31 PM
  • Vietha2004: A đạt cj tr a S cj hà nnmđ 1/22/2018 10:06:07 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: ukm pp e 1/22/2018 10:06:29 PM
  • KTT: bye bye e hà nha. E nn mơ siêu đẹpbig_hug 1/22/2018 10:06:45 PM
  • Mặc Uyên: . 1/22/2018 10:08:39 PM
  • Mặc Uyên: ô nói j 1/22/2018 10:09:02 PM
  • Mặc Uyên: lag quá 1/22/2018 10:11:13 PM
  • Mặc Uyên: h ms đọc 1/22/2018 10:11:19 PM
  • Mặc Uyên: còn ai ko 1/22/2018 10:11:33 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: còn nè bà 1/22/2018 10:11:50 PM
  • Mặc Uyên: lát ib 1/22/2018 10:11:58 PM
  • Mặc Uyên: có vụ ms 1/22/2018 10:12:10 PM
  • Mặc Uyên: hay lm 1/22/2018 10:12:16 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: ib luôn đc ko bà 1/22/2018 10:12:34 PM
  • Phùng THị Thu Hà: laughing 1/22/2018 10:13:09 PM
  • Phùng THị Thu Hà: đi hết rồi ạ? 1/22/2018 10:13:18 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chưa 1/22/2018 10:13:31 PM
  • Phùng THị Thu Hà: chào ô Đạt 1/22/2018 10:13:40 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chào hà 1/22/2018 10:13:46 PM
  • Phùng THị Thu Hà: ukm 1/22/2018 10:13:53 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: ukm 1/22/2018 10:13:58 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: bà ko hok ak 1/22/2018 10:14:04 PM
  • Phùng THị Thu Hà: ko tui đg chơi 1/22/2018 10:14:23 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: giống tui 1/22/2018 10:14:43 PM
  • Phùng THị Thu Hà: ô là đg chs vs ny còn tui đg chs 1 mk chán quálaughing 1/22/2018 10:15:13 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: L off rùi hay sao ấy 1/22/2018 10:15:29 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: h tui cũng chơi 1 mik 1/22/2018 10:16:20 PM
  • Mặc Uyên:1/22/2018 10:16:52 PM
  • Mặc Uyên: mn off hết r à 1/22/2018 10:17:07 PM
  • ๖ۣۜAlone: cj2 1/22/2018 10:17:07 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chưa nà 1/22/2018 10:17:21 PM
  • ๖ۣۜAlone: bj bơ lần 3 1/22/2018 10:17:57 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: a hiểu eg ak 1/22/2018 10:18:26 PM
  • ๖ۣۜAlone: -_- e bt mà , tại atr ra đê ngủ suốt nên hiểu 1/22/2018 10:18:53 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: eg e có thể bớt nói đểu a đc ko 1/22/2018 10:19:08 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: straight_face 1/22/2018 10:19:11 PM
  • ๖ۣۜAlone: có nói đểu đâu 1/22/2018 10:19:49 PM
  • ๖ۣۜAlone: sự thật ... 1/22/2018 10:19:54 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: hờ hờ 1/22/2018 10:20:07 PM
  • ST: thế tối nay Đ vẫn ra đê nữa ak 1/22/2018 10:28:13 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chu cũng thế còn nói ai 1/22/2018 10:29:51 PM
  • ST: a cần j phải ra đê 1/22/2018 10:30:14 PM
  • ST: về dạy lại vk đi. suốt ngày bị nó đuổi ra đê 1/22/2018 10:30:42 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: thôi thôi 1/22/2018 10:31:38 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: lại chém 1/22/2018 10:31:42 PM
  • Titania: ==' 1/22/2018 10:31:46 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: chào eg 1/22/2018 10:32:33 PM
  • Titania: hj atr 1/22/2018 10:32:44 PM
  • ST: 2 eg 1/22/2018 10:33:06 PM
  • Titania: hj ah 2 1/22/2018 10:33:11 PM
  • Titania: mà có ai thấy cj 2 e đâu ko 1/22/2018 10:37:52 PM
  • ST: c2 e ngủ r 1/22/2018 10:44:21 PM
  • Titania: e quên ko ns vs cj ý h cj ý ngủ r chắc mai e bj tính sổ qá ==' 1/22/2018 10:45:02 PM
  • ST: ns j... 1/22/2018 10:45:19 PM
  • Mặc Uyên: .. 1/22/2018 10:46:15 PM
  • ST: bà L đi ra đê vs Đ đi 1/22/2018 10:46:58 PM
  • Mặc Uyên: lại j nk v 1/22/2018 10:47:08 PM
  • Mặc Uyên: ra đê lm j 1/22/2018 10:47:27 PM
  • haoluu192: chào chào happy 1/22/2018 10:53:21 PM
  • Titania: .. 1/22/2018 10:54:29 PM
  • Mặc Uyên: .. 1/22/2018 11:08:12 PM
  • Vietha2004: Còn ai onl k ạ 1/22/2018 11:26:25 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: a nè 1/22/2018 11:27:12 PM
  • Vietha2004: Hi a 1/22/2018 11:27:26 PM
  • Vietha2004: E tuởng k có ai 1/22/2018 11:27:40 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: e ngủ muộn nhỉ 1/22/2018 11:27:47 PM
  • Vietha2004: E ms hok xong 1/22/2018 11:27:50 PM
  • Vietha2004: Nên h rảnh nên lên chơi a cx onl muộn thế 1/22/2018 11:28:37 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: e còn bé mà ngủ muộn ko tốt đâu 1/22/2018 11:30:14 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: còn ai ko 1/22/2018 11:32:14 PM
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần: /......../......./....../..... 1/22/2018 11:35:57 PM
Đăng nhập để chém gió cùng mọi người
  • Đỗ Quang Chính
  • Lê Thị Thu Hà
  • dvthuat
  • Học Tại Nhà
  • newsun
  • roilevitinh_hn
  • Trần Nhật Tân
  • GreenmjlkTea FeelingTea
  • nguyenphuc423
  • Xusint
  • htnhoho
  • tnhnhokhao
  • hailuagiao
  • babylove_yourfriend_1996
  • tuananh.tpt
  • dungtth82
  • watashitipho
  • thienthan_forever123
  • hanhphucnhe989
  • xyz
  • Bruce Lee
  • mackhue59
  • sock_boy_xjnh_95
  • nghiahongoanh
  • HọcTạiNhà
  • super.aq.love.love.love
  • mathworld1999
  • phamviet2903
  • ducky0910199x
  • vet2696
  • ducdanh97
  • dangphuonganhk55a1s.hus
  • ♂Vitamin_Tờ♫
  • leeminhorain
  • binhnguyenhoangvu
  • leesoohee97qn
  • hnguyentien
  • Vô Minh
  • AnAn
  • athena.pi98
  • Park Hee Chan
  • cunglamhong
  • khoaita567
  • huongtrau_buffalow
  • nguyentienha95
  • thattiennu_kute_dangiu
  • ekira9x
  • ngolam39
  • thiếu_chất_xám
  • Nguyễn Đức Anh
  • doan.khoa
  • phamngocquynh19
  • chaicolovenobita
  • thanhgaubong
  • lovesong.2k12
  • NguyễnTốngKhánhLinh
  • yesterdayandpresent_2310
  • vanthoacb
  • Dark.Devil.SD
  • caheoxanh_99
  • h0tb0y_94
  • quangtung237
  • vietphong9x
  • caunhocngoc_97
  • thanhnghia96
  • bbzzbcbcacac
  • hoangvuly12
  • hakutelht_94
  • thanchet_iu_nuhoang_banggia
  • worried_person_zzzz
  • bjgbang_vn
  • trai_tim_bang_gia_1808
  • shindodark112
  • ngthanhhieu88
  • zb1309
  • kimvanthao
  • hongnhat74
  • i_crazy_4u101
  • sweet_memory0912
  • hoiduong698
  • ittaitan
  • Dép Lê Con Nhà Quê
  • thanhnguyen5718
  • dongson.nd
  • anhthong.1996
  • Trần Phú
  • truoctran2007
  • hoanghon755
  • phamphuckhoinguyen
  • maidagaga
  • tabaosiphu1991
  • adjmtwpg2
  • khoibayvetroi
  • nhunglienhuong
  • justindrewd96
  • huongtraneni
  • minato_fire1069
  • justateenabi
  • soohyna
  • candigillian
  • terrible987654
  • trungha_tran
  • tranxuanluongcdspna_k8bcntt
  • dolaemon
  • dolequan06
  • hoaithanhtnu
  • songotenf1
  • keo.shandy
  • vankhanhpf96
  • Phạm Anh Tuấn
  • thienbinh1001
  • phhuynh.tt
  • ductoan933
  • ♥♥♥ Panda Sơkiu Panda Mập ♥♥♥
  • nguyen_lou520
  • Phy Phy ♥ ヾ(☆▽☆) ♥
  • gnolwalker
  • dienhoakhoinguyen
  • jennifer.generation22
  • nvrinh
  • Tiến Thực
  • kratoss1407
  • cuongtrang265
  • Gió!
  • iamsuprael01
  • phamngocthao262
  • nguyenthanhnam488
  • thubi_panda
  • duyphong1969
  • sonnguyen846
  • woodknight22
  • Gà Rừng
  • ngothiphuong211
  • m_internet001
  • buihuyenchang
  • vlinh51
  • hoabachhop123ntt
  • honey.cake313
  • prokiller310
  • ducthieugia1998
  • phuoclinh0181
  • caolinh111111
  • vitvitvit29
  • vitxinh0902
  • anh_chang_co_don_3ky
  • successonyourhands
  • vuonlenmoingay
  • nhungcoi2109
  • vanbao2706
  • Billy Ken
  • vienktpicenza
  • stonecorter
  • botrungyc
  • nhoxty34
  • chonhoi110
  • tuanthanhvl
  • todangtvd
  • noluckhongngung1
  • tieulinhtinh102
  • vuongducthuanbg
  • ♥♂Ham٩(͡๏̮͡๏)۶Học♀♥
  • rabbitdieu
  • phungthoiphong1999
  • luubkhero
  • luuvanson35
  • neymarjrhuy
  • monkey_tb_96
  • ttbn841996
  • nhathuynh245
  • necromancy1996s
  • godfather9xx
  • phamtrungnhan122272
  • nghia7btq1234
  • thuỷ lê
  • thangha1311999
  • Jea...student
  • Dân Nguyễn
  • devilphuong96
  • .
  • tqmaries34
  • WhjteShadow
  • ๖ۣۜDevilღ
  • bontiton96
  • thienbs98
  • smix84
  • mikicodon
  • nhephong2
  • hy_nho_ai
  • vanduc040902
  • sweetmilk1412
  • phamvanminh_812
  • deptrai331
  • ttsondhtg
  • phuonghoababu
  • taknight92
  • theduong90
  • hiephiep008
  • phathero99
  • ki_niem_voi_toi
  • Mun Sociu
  • vinh.s2_ai
  • tuongquyenn
  • white cloud
  • Thịnh Hải Yến
  • transon123456789123456789
  • thanhnienkosonga921996
  • trangiang1210
  • gio_lang_thang
  • hang73hl
  • Bỗng Dưng Muốn Chết
  • Tonny_Mon_97
  • letrongduc2410
  • tomato.lover98
  • nammeo051096
  • phuongdung30497
  • yummyup1312
  • zerokool020596
  • nguyenbahoangbn97
  • ẩn ngư
  • choihajin89
  • danglinhdt8a
  • Đỗ Bằng Được
  • yuka loan
  • lenguyenanhthu2991999
  • duychuan95
  • sarah_curie
  • alexangđơ
  • sakurakinomoto199
  • luush06
  • phi.ngocanh8
  • hoanghoai1982000
  • iwillbestrong1101
  • quangtinh112
  • thuphuong10111997
  • tayduky290398
  • buoncuoi012
  • minh_thúy
  • mylove11a1pro
  • akaryzung
  • chauvantrung2995
  • anhdao
  • Nero
  • longthienxathu
  • loptruongnguyen
  • leejongsukleejongsuk
  • bồ công anh
  • cao văn sỹ
  • Lone star
  • never give up
  • tramy_stupid2
  • mousethuy
  • Sam
  • babie_icy.lovely
  • sheep9
  • cobemotmi10
  • ღ S' ayapo ღ
  • john19x6
  • Dark
  • giangkoi11196
  • tranhuyphuong99
  • namha500
  • Meoz
  • saupc7
  • Tonny_Mon_97
  • boyhandsome537
  • tinh_than_96
  • changngocxuan151095
  • gaconcute_2013
  • Sin
  • casio8tanyen
  • Choco*Pie
  • thusarah
  • tadaykhongsoai
  • seastar2592
  • Ruande Zôn
  • lmhlinh1997
  • munkwonkang
  • fighting
  • tart
  • dieu2102
  • cuonglapro97
  • atsm_001
  • luckyboy_kg1998
  • Nobi Nobita
  • akhoa13579
  • nguyenvantoan140dinhdong
  • anhquan9696
  • a5k67.lnq
  • Gia Hưng
  • tozakendo
  • phudongphu12
  • luuphuongthao62
  • Minn
  • lexuanmanh98
  • diendien_01
  • luongkimhien98
  • duanmath_xh
  • datk713kx
  • huynhtanhao_95_1996
  • peboo611998
  • kiemgo1999
  • geotherick
  • luong.thanhtruong
  • nguyenduythong.2012
  • soi.1stlife
  • nguyenthily257
  • huuhaono1
  • nguyenconguoc1996
  • dongthoigian1096
  • thanhthaiagu
  • thanhhoapro056
  • thukiet1979
  • xuanhuy164
  • ♫Lốc♫Xoáy♫
  • i_love_you_12387
  • datwin195
  • kto138
  • ~ *** ~
  • teengirl_hn1998
  • mãi yêu mình em
  • trilac2013
  • Wind
  • kuzulies
  • hoanghathu1998
  • nhoknana95
  • F7
  • langvohue1234
  • Pi
  • Togo
  • hothinhtls
  • hoangloclop4
  • gautruc_199854
  • janenguyen9079
  • cuoidiem035
  • giam_chua
  • Tôi đi code dạo
  • maitrangvnbk47
  • nhi.angel0809
  • nguyenhuuminh22
  • Thìn
  • Mưa Đêm
  • dangtuan251097
  • Pls Say Sthing
  • c.x.sadhp1999
  • buivanhuybvh
  • huyhoangfan
  • lukie.luke142
  • ~Kezo~
  • Duy Phong
  • hattuyetmuadong_banggia
  • Trương Khởi Lâm
  • Hi Quang
  • ๖ۣۜKbts_๖ۣۜNTLH♓
  • mynhi0601
  • hikichbo
  • dorazu179
  • nguyenxuando
  • ndanh9999999
  • ♀_♥๖ۣۜT๖ۣۜE๖ۣۜO♥_♂
  • ndanh999
  • hjjj1602
  • Bi
  • tuongngo28
  • silanmarry
  • cafe9x92
  • kaitokidabcd
  • loan.pham7300
  • minhkute141
  • supervphuoc
  • chauvobmt
  • nguyenthiphuonglk33
  • Đá Nhỏ
  • Trúc Võ
  • dungfifteen
  • tuanthanh31121997
  • Nel Kezo
  • phuc9096
  • phamstars1203
  • conyeumeobeo
  • Conan Edogawa
  • Wade
  • Kẹo Vị Táo
  • khanhck2511
  • Hoài Nguyễn
  • nguyenbitit
  • aedungcuong
  • minh.phungxuan
  • ♥Ngọc Trinh♥
  • xuan.luc22101992
  • linh.phuong44
  • wonderwings007
  • Thu Cúc
  • maihd1980
  • Tiến Đạt
  • thuphuong.020298
  • Bi L-Lăng cmn N-Nhăng
  • xq.qn96
  • dynamite
  • gialinhgialinh
  • buituoi1999
  • Lam
  • ๖ۣۜSunღ
  • ivymoonnguyen
  • Anthemy
  • hoangtouyen1997
  • ღTùngღ
  • Kim Lân
  • minhtu_dragon
  • bhtb55
  • nnm_axe
  • •⊱♦~~♣~~♦ ⊰ •
  • hungreocmg
  • candymapbmt
  • thanhkhanhhoa6631
  • bichlieukt89
  • truonghueman1998
  • dangvantho12as0
  • chausen855345
  • Moon
  • tramthiendhnmaths
  • thuhuong1607hhpt
  • phamthanhhaivy
  • Bùi Cao Thắng
  • mikako303
  • hiunguynminh565
  • Thanh dương
  • thuydungtran63
  • duongminh318
  • tran85295
  • miuvuivui12345678901
  • AvEnGeRs_A1
  • †¯™»_๖ۣۜUchiha_«™¯†
  • phnhung921
  • Bông
  • Jocker
  • hoangoanh2893
  • colianna123456789
  • vanloi07d1
  • muoivatly
  • ntnttrang1999
  • Jang Dang
  • hakunzee5897
  • Hakunzee
  • gió lặng
  • Phùng Xuân Minh
  • ★★★★★★★★★★JOHNNN 509★★★★★★★★★★
  • halo123
  • toantutebgbg
  • phuongthao202
  • nguyenhoang171197
  • xtuyen170391
  • nguyenminhquang_khung
  • nhuxuan2517
  • Nhok Clover
  • nguyenductuananh33
  • tattzgaruhp1997
  • camapheoga
  • sea dragon
  • anhmanhhy97
  • huynhduyvinh1305143
  • thehamngo
  • familylan1611
  • hanguyen19081999
  • kinhcanbeo
  • ngochungnguyen566
  • pasttrauma_sfiemth
  • huuthangn97
  • ngoxuanvinh2510
  • vukhiem9c
  • heocon.ntct.2606
  • laughjng_rungvang
  • bbb
  • cuccugato74
  • lauvanhoa
  • luongmauhoang
  • tuantanhtt1997
  • Sea Urchin march
  • Dark
  • trananh200033
  • nguyenvucnkt
  • thocon.kute1996
  • truong12321
  • YiYangQianXi
  • nguoicodanh.2812
  • Thanh Long
  • tazanchaudoc
  • kimbum98_1
  • huongquynh970
  • huongcandy0206
  • lan_pk1
  • nguyenngaa14
  • Nấm Di Động
  • 01235637736nhu
  • kieudungbt
  • trongtlt95
  • bahai1966
  • Nguyễn Ngô Anh Tuấn
  • Vân Anh
  • han
  • buivantoan2001
  • Ghost rider
  • lybeosun
  • Thỏ Kitty
  • toan1
  • hangmivn
  • Sam Tats
  • Nguyentuat123.TN
  • lexuanbao999
  • ๖ۣۜHoàng ๖ۣۜAnh
  • Nganiuyixing
  • anhvt93
  • Lê Việt Tùng
  • ๖ۣۜJinღ๖ۣۜKaido
  • navybui22
  • huytn01062015
  • Nghé Tồ
  • diemthuy852
  • phupro8c
  • duyducminh
  • aigoido333
  • lailathaonguyen
  • sliverstone101098
  • locnuoc
  • Ham Học Hỏi
  • fantastic dragon
  • Sea Dragon
  • Salim
  • meoconxichum103
  • phamduong1234
  • MiMi
  • Ruanyu Jian
  • no
  • www.thonuong8
  • NhẬt Nhật
  • Faker
  • Băng Hạ
  • •♥• Kem •♥•
  • lephamhieu
  • loclucian
  • wangjunkai2712
  • nhoxlobely_120
  • bangnk2000
  • vumaimq
  • Hoa Đỗ
  • huynhhoangphu.10k7
  • ๖ۣۜℒε✪ †hƠ ɳGây
  • pekien_nhatkimanh
  • hao5103946
  • lbxmanhnhat
  • thien01122
  • thanhanhhoang1998
  • vuvanduong12c108
  • huynhnhathuy
  • kaitou1475
  • lehien141099
  • noivoi_visaothe
  • ngoc.lenhu2005
  • Nguyễn Anh Tuấn
  • nguyenhoa2ctyd
  • Yatogami Tohka
  • alwaysmilewithyou2000
  • myha03032000
  • rungxanu30
  • DuDu
  • ๖ۣۜVua_๖ۣۜVô_๖ۣۜDanh_001
  • huyenthu2001
  • dungthuyimono
  • Mimileloveyou
  • anhthuka
  • rang
  • nghiyoyo
  • hieua1tt1
  • hieuprodzai1812
  • vuanhkiet0901
  • talavua11420000
  • ♫ Hằngg Ngaa ♫
  • Ngân Tít
  • nhok cute
  • tuankhanhspkt
  • satthu1909
  • hoang_tu_be_323
  • hoangviet25251
  • Komichan-jun
  • duongcscx
  • taanhdao16520
  • {Simon}_King_Math
  • ngaythu2dangso
  • Den Ly
  • nguyen0tien
  • linhsmile3012
  • nguyenquangtruonghktcute
  • Nguyễn Quang Tuấn
  • thom1712000
  • Jolly Nguyễn
  • @_@ *Mèo* @_@
  • duongrooneyhd1985
  • AKIRA
  • Đức Anh
  • thanhhuyen218969
  • Dương Yến Linh
  • 111aze
  • huongsehunnie
  • tclsptk25
  • Confusion
  • vanhuydk
  • Vô Danh
  • hoanghangnga2000
  • thaiviptn1201
  • Minhˆˆ
  • CHỈ THÍCH ĂN
  • ❦Nắng❦
  • nhung
  • xonefmtop40
  • phammaianh23
  • crocodie
  • Thiên Bình
  • tam654834
  • tramylethi071
  • shinjadoo
  • minhcute_99
  • bualun000
  • tbao
  • Effort
  • chinh923
  • galaxy
  • phanthilanphuong2011
  • vuthuytrang3112
  • Thùy Trang
  • maivyy
  • Trương Thị Thu Phượng
  • mitvodich
  • Minh................
  • ★·.·´¯`·.·★Poseidon★·.·´¯`·.·★
  • Hàn Thiên Dii
  • Vim
  • gaquay
  • thotrang
  • tùng mon
  • nguyenyen1510919311
  • buatruavuive
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • caigihu123
  • FuYu
  • KTT
  • taovipnhihue
  • vũ văn trí kiên
  • nhoxchuabietyeu_lk
  • Anti Bụt :))
  • ♓๖ۣۜMinh๖ۣۜTùng♓
  • duongtuyen198
  • nguyennhung
  • thuybaekons
  • ♦ ♣ ๖ۣۜTrung ♠ ♥
  • Tranthihahoe
  • Kiyoshi Bụt
  • Yêu Tatoo
  • milodatnguyen
  • Hoài Sherry
  • trunghen123
  • Hoàng Specter
  • lovesomebody121
  • Băng Băng
  • nguyenthiquynhphuong
  • Another
  • Kẻ lãng quên
  • ๖ۣۜConan♥doyleღ
  • huongcuctan
  • vuthithom0123
  • dfvxg
  • hgdam25
  • shadow night ^.^
  • Blood
  • Ngọc Ánh
  • dahoala
  • Bloody's Rose
  • Nguyễn Nhung
  • aki
  • h231
  • tuanhnguyen
  • congla118
  • lycaosam
  • hoangtiem 이
  • oanhsu
  • Lionel Messi
  • Kiên
  • phamthihoiphamthihoi
  • hanyu
  • dangqn1998
  • linhtung123hg
  • minhhuong25031999
  • Lion*City
  • hờ hờ
  • hienhoxinh1998
  • n.dang.giang39
  • loccoi
  • Trongduc0403
  • phuongthaoht99
  • Xiuu Ngố's
  • Hoàng Yến
  • Hieubui
  • huyevil
  • vuthithanhuyen2902
  • dungnguyen
  • ๖ۣۜLazer๖ۣۜD♥๖ۣۜGin
  • chamhocdethihsgtoan
  • dunganh1308
  • languegework
  • danius99qn
  • vananh
  • [_đéo_có_tên_]
  • mimicuongtroi
  • ๖ۣۜHưng ๖ۣۜNhân
  • ⊰๖ۣۜNgốc๖ۣۜ ⊱
  • halieuanh1
  • 113
  • Bảo Trâm
  • LeQuynh
  • sakurachirido
  • ๖ۣۜSadღ
  • Hà Hoa
  • d.nguyn2603
  • chauchauchau98
  • 117
  • ღComPuncTionღ
  • cobannhungkhongdongian
  • tritanngo99
  • vanduongts
  • Linh bò
  • tasfuskau
  • thanhpre123
  • minh*mun
  • Đinh Thế Anh
  • thiendi.este
  • Moss
  • nhokbeo1212
  • cabvcahp
  • chibietngayhomnay
  • Vanus
  • ducnguyenminh777
  • Hongnhung08102015
  • tuyenluckyok
  • amthambenem661
  • ♥♥ Kiềuu HOa'ss ♥♥ Ahihi..
  • thanhduy.zad
  • thaongoc9a2001
  • Nghịch Tương Tư
  • phamcuongcuong98
  • linhtinh
  • phamdangkhoa2936
  • ngoctam9a8
  • Toán Cấp 3
  • TQT
  • mxuyen7
  • W2S
  • Šamori
  • thantrunghieu2002
  • Cesc Linh
  • Sao Hỏa
  • chungphi18vn
  • ๖ۣۜColdღ
  • hoanglinhss20
  • ღLinhღ
  • lethitrang563
  • van.thuy.a1
  • thanhlong527
  • suongchieu770
  • sautaca
  • huydanso
  • thienbao25
  • banhe14031998
  • Ovember2003
  • hienct9x
  • ockimchun1999
  • phamloan 8800
  • ♫ξ♣ __Kevil__♣ ζ♫
  • Thang Ozil
  • Kaito kid
  • speedy2011vnn
  • minhhien23minhhien
  • i love you
  • _Lầy.
  • baongoc9912htn
  • phc_n17
  • ThomLongLongLong
  • rhaonamnhi2212
  • thietlactrung
  • mitsuo
  • ๖ۣۜDemonღ
  • phucanhthien
  • Dưa Leo
  • ≧◔◡◔≦ ۩๖ۣۜNguyễn's Đức♫10x۩
  • ♉ Bingsu Pinacolada ❦ ❦
  • ♂KKK♂
  • loan
  • ngocanhluong301
  • k10k11nk3b
  • tructrotreu123
  • khanh09031999
  • phanthixuanluong99
  • nguyenconghoaganh01
  • hoanga5k27
  • hieu31012003
  • acmadoiem251
  • tranthutrangtianc
  • adamkhoo
  • rianhdm
  • thangbptn
  • Tôi Tên Nhái
  • vuphuongnga810
  • Jin
  • phng_pepsi
  • Thiên Thu
  • thong3q1999
  • hanghocgioi57
  • thienduonggia2811
  • tuthi1919
  • solider76 :3
  • nguyenminhvip123
  • phuongtfboys2408
  • .
  • Uckute0x
  • Loan9aclo
  • nguyenngoctrangan.06.06
  • Đơn giản là yêu
  • Lê Giang
  • Nguyễn Đức Minh
  • Ryo
  • .....
  • cụ nhỏ
  • Update
  • Hana
  • zzz02042001
  • quannguyenthd2
  • w
  • Nguyệt !!
  • egaehaneya
  • ai là ai?
  • ๖ۣۜTõn♥
  • thành khuất
  • huonghuong
  • thuyvan
  • nam
  • Mặt Trời Bé
  • phuonggay
  • ♥ Bảo bối của ck ♥
  • nhokkaitoo
  • superduccong
  • thao24102
  • leanhtuan11a1
  • haotocbac
  • h
  • thainhung2905
  • oceancyclones
  • anhh
  • toilamothuyenthoai
  • DoTri69
  • cô chủ của osin
  • bac1024578
  • denxam123
  • nhat6pth
  • conheo12c6
  • Tuyết Linh
  • nhoxkhi
  • Bùi Thị Thanh Nga
  • vannamlan72
  • Hậu Duệ Mặt Trời
  • tuantudeptrai2000
  • giangzany369
  • bamboonguyen0411
  • xitrummeomeo
  • thanhhuongthcsmpbd
  • K
  • Update
  • nhansubbq
  • Bất Cần Đời
  • ๖ۣۜKenvil Ƹ̴Ӂ̴Ʒ ๖ۣۜTrần
  • Tiểu Hi
  • huyenthanhut9
  • phuong19
  • Linh
  • muntrn789
  • ngu nhất xóm
  • Kunselly
  • dotuan0918
  • quinceclara
  • chat tí nữa thôi đừng block nhé
  • Hàn Ngọc Thiên Băng
  • nhuhoangvo810
  • hạng
  • Kh
  • Lãnh Hoàng Nhật Quân
  • tuyetnhitran8
  • phanngocngoc12345
  • tieuhame4444
  • TenshiBaka
  • hahaha
  • tarrasqueaohk
  • Caohuongjc
  • Anh Yêu
  • noh ssiw i
  • levanhung051098
  • lvtthichbongda
  • Thiên Hạ Vô Song
  • linhshaldy
  • 123456789
  • hongtintk123
  • leduydung
  • ajajsssss7
  • thao2632111
  • huyminky
  • dinhchienmese
  • truonghailam10112000
  • ngocluongmy04
  • giahuyhh2828
  • toilalong.99
  • Mây
  • phicong98lbls
  • Trafaldar D Water Law
  • ngocthaihoangvn
  • Cửu Thiên Vũ
  • net.sonicz
  • Huyền Kute
  • Chí Hiếu
  • chudieuquynh1506
  • tmcfunny
  • nguyenxuanhien2008
  • thanhtvtd
  • Ly Siucao
  • Trần Vũ Tử Lam
  • kieukieukieu2002
  • tamtung041
  • ๖ۣۜAlone
  • dlboys212301
  • 23
  • nguyenlongdg12345
  • mymieumieu69
  • daongochoa2002
  • maiphuong12
  • Đức Vỹ
  • Trung
  • Ông chủ của cô chủ
  • snowflakes
  • ๖ۣۜSadღ
  • Tiểu thư cá tính
  • thư
  • Nhungevil
  • dslland
  • à mà thôi
  • lananhtranthi19
  • Natsu
  • Băng
  • ๖ۣۜCold ๖ۣۜAries
  • ptmpc.trung
  • cobenhinhanh
  • tranquynhat2002
  • hnqtan.c2vthanh.vn
  • nguyenthithuytrang1229
  • toanthcsphuvang1617
  • liyifeng732002
  • Nguyễn Thành Long
  • Quỳnh Aka
  • benganxd2509
  • pnt2912003
  • nhathan61
  • ❦ Mưa ❦
  • binhphuong2232006
  • chuotcondangyeu07082004
  • hahonggiang03071967
  • Sakura
  • ๖ۣۜBrønsted Lowryღ
  • shinnie.sowon
  • anhtd2015
  • thuhiendt752
  • ๖ۣۜBé๖ۣۜChanh☆GTV
  • nguyenhaiduong942
  • Tôi là chính tôi
  • trikythcsphulang
  • Lê Lê Vy
  • lydinhthanhtuyen
  • Hồng Lam
  • Ngốk
  • nguyenquynhmai228
  • congn086
  • minhquandv123
  • Titania
  • Hưng Phú
  • hoangnhuminhquan2001
  • ngohaivan7
  • arima sama
  • Hoàng Yến
  • huutinh
  • Yuri Nguyễn
  • puu
  • caccontoi
  • Khang Ota
  • sonejung582007
  • thanhdatn
  • I Love You
  • nguyễn hoa
  • hanh01682803066
  • kimchi
  • anhthuduong141
  • ayato
  • Vietha2004
  • minhquan187212
  • trangkimyen2206
  • Mặc Uyên
  • nguyenquangtuan640
  • blood
  • tranmai9a3tdn
  • nguoidensau2k2
  • thuyduong.op61
  • SƯ TỬ
  • mmmmmm
  • tuanhuong
  • Maynguyen9585
  • naxinhdep
  • tôi ăn cứt cho c Lý
  • Thanh Nga
  • tôi chỉ là 1 con chó của TQT
  • huyenankhethaibinh
  • KTT
  • miumiu
  • ST
  • doanphuong0916803337
  • dinhkhachuy1234
  • Phùng THị Thu Hà
  • haoluu192