a.Xét\triangle ADK và \triangle CNK có:\widehat{ADK}=\widehat{CNK}(SLT)
\widehat{AKD}=\widehat{CKN}(đối đỉnh).
\rightarrow \triangle ADK\sim \triangle CNK(g-g)\rightarrow \frac{KA}{KC}=\frac{DK}{KN}\rightarrow KA.KN=KD.KC
b.Xét \triangle DAM và\triangle DCN có:
\widehat{DAM}=\widehat{DCN}
\widehat{ADM}=\widehat{DNC}
\rightarrow \triangle DAM\sim \triangle NCD(g-g)\rightarrow \frac{DA}{NC}=\frac{DM}{DN}\rightarrow DA.DN=NC.DM.
c.Xét \triangle AKM và \triangle CKD có:
\widehat{AKM}=\widehat{CKD}(đối đỉnh)
\widehat{KAM}=\widehat{KCD}(SLT)
\rightarrow \triangle AKM\sim \triangle CKD\rightarrow \frac{AK}{CK}=\frac{KM}{KD}
mà\frac{KA}{KC}=\frac{DK}{KN} (cmt)
\rightarrow \frac{KM}{KD}=\frac{KD}{KN}\rightarrow KD^{2}=KM.KN.
d.AB=10(cm)\rightarrow CD=10(cm)
Có\triangle AKM\sim \triangle CKD(cmt)
\rightarrow \frac{S_{AKM}}{S_{CKD}}=(\frac{AM}{CD})^{2}=(\frac{6}{10})^{2}=\frac{9}{25}