gt⇔2[(a+b−52)2+(c−52)2]=25Áp dụng BĐT Bunhiacopxki:25≥(a+b+c−5)2⇒a+b+c≤10
Ta có:A=a+b+c+48(122.√12.√a+10+123.2.2.3√b+c)
Áp dụng BĐT Cauchy:2.√12.√a+10≤a+22
3.2.2.3√b+c≤b+c+16
⇒122.√12.√a+10+123.2.2.3√b+c≥12a+22+12b+c+16≥48a+b+c+38
⇒A≥a+b+c+482a+b+c+38
Đặt t=a+b+c,0<t≤10
⇒A≥t+482t+38=f(t)
BBT⇒A≥58
Dấu''='' xra⇔a=2;b=3;c=5