Xét f(x)=4x4x4+1=(2x2+2x+1)−(2x2−2x+1)(2x2+2x+1)(2x2−2x+1)=12x2−2x+1−12x2+2x+1(∗)Lại chứng minh đc 12x2+2x+1=12(x+1)2−2(x+1)+1
Nên (∗)⇔f(x)=12x2−2x+1−12(x+1)2−2(x+1)+1
Vậy :A=f(1)+f(2)+...+f(n)=12.12−2.1+1−12(n+1)2−2(n+1)+1
=1−12n2+2n+1=2n2+2n2n2+2n+1