đề 2 Cho 3 số thực dương $a,b,c$ thỏa mãn $abc=1$. Chứng minh rằng:
$$\dfrac{\sqrt{a}}{2+b\sqrt{a}}+\dfrac{\sqrt{b}}{2+c\sqrt{b}}+\dfrac{\sqrt{c}}{2+a\sqrt{c}} \geq 1$$
giải
Vì $abc=1$ nên tồn tại các số $x,y,z$ sao cho $\sqrt{a}=\dfrac{x}{y},\sqrt{b}=\dfrac{y}{z},\sqrt{c}=\dfrac{z}{x}$
Thay vào điều phải chứng minh ta chỉ cần chứng minh:
$$\dfrac{xz^2}{2yz^2+xy^2}+\dfrac{yx^2}{2zx^2+yz^2}+\dfrac{zy^2}{2xy^2+zx^2} \geq 1$$
Áp dụng Bất đẳng thức $Cauchy-Schwarz$ ta có:
$$\dfrac{xz^2}{2yz^2+xy^2}+\dfrac{yx^2}{2zx^2+yz^2}+\dfrac{zy^2}{2xy^2+zx^2}=\dfrac{x^2z^2}{2xyz^2+x^2y^2}+\dfrac{y^2x^2}{2yzx^2+y^2z^2}+\dfrac{z^2y^2}{2zxy^2+z^2x^2} \geq 1$$
Dấu "=" xảy ra khi và chỉ khi $a=b=c=1$
p/s: hiểu k linh :3