Xét (x+1)2n=C02n+xC12n+x2C22n+x3C32n+x4C42n−⋯+x2nC2n2n
Xét (x−1)2n=C02n−xC12n+x2C22n−x3C32n+x4C42n−⋯+x2nC2n2n
⇒(x+1)2n+(x−1)2n=2(C02n+x2C22n+x4C42n+⋯+x2nC2n2n)
Thay x=3 ta được
24n+22n=2(C02n+32C22n+34C42n+⋯+32nC2n2n)
⇒C02n+32C22n+34C42n+⋯+32nC2n2n=22n−1.(22n+1)