Chứng minh với a,b,c,d>0
a) $\frac{a+c}{a+b} + \frac{b+d}{b+c} +\frac{c+a}{c+d} + \frac{d+b}{d+a} \geq 4$
b) $\frac{a+c}{(a+b)(c+d)} + \frac{b+d}{(a+d)(b+c)} \geq \frac{4}{a+b+c+d}$
c) $\frac{3}{a+b} + \frac{2}{c+d} +\frac{a+b}{(a+c)(b+d)} \geq \frac{12}{a+b+c+d}$