$\overrightarrow{MA} +\overrightarrow{MB} +\overrightarrow{MC} +\overrightarrow{MD}= 4\overrightarrow{MI} +\overrightarrow{IA} +\overrightarrow{IB} +\overrightarrow{IC}+ \overrightarrow{ID}$
$=4\overrightarrow{MI} +4\overrightarrow{IG} +\overrightarrow{GA} +\overrightarrow{GB}+ \overrightarrow{GC} +\overrightarrow{GD} =4\overrightarrow{MI} +4\overrightarrow{IG} +\overrightarrow{GC} \ (1)$
Theo bài ra $IC = 3IG \Rightarrow 3\overrightarrow{IG}=- \overrightarrow{IC}$ thế lên $(1)$ ta có
$(1) = \overrightarrow{MA} +\overrightarrow{MB} +\overrightarrow{MC} +\overrightarrow{MD}= 4\overrightarrow{MI} +\overrightarrow{IA} +\overrightarrow{IB} +\overrightarrow{IC}+ \overrightarrow{ID}$
$=4\overrightarrow{MI} +4\overrightarrow{IG} +\overrightarrow{GA} +\overrightarrow{GB}+ \overrightarrow{GC} +\overrightarrow{GD} =4\overrightarrow{MI} +\overrightarrow{IG} -\overrightarrow{IC}+\overrightarrow{GC} $
$=4\overrightarrow{MI} +\overrightarrow{IC} -\overrightarrow{IC}=4\overrightarrow{MI}$