2cos22x+cos2x=4sin22x.cos2x
⇔2cos22x+cos2x=4sin22x.1+cos2x2
⇔4cos22x+2cos2x=4(1−cos22x)(1+cos2x) đặt cos2x=t; t∈[−1; 1]
⇔4t2+2t=4(1−t2)(1+t)
⇔2t3+4t2−t−2=0
+ t=−2 loại
+ t=−1√2=cos2x⇒2x=±3π4+k2π
+ t=1√2=cos2x⇒2x=±π4+k2π
Coi như xong nhé, chia 2 sang là ok