1=cos3A+cos3B+cos3C=2cos3(A+B)2cos3(A−B)2+1−2sin23C2
⇒1=−2sin3C2cos3(A−B)2=1−2sin3C2(cos3(A+B)2−cos3(A−B)2)
⇒1=1+4sin3A2sin3B2sin3C2⇒sin3A2sin3B2sin3C2=0
⇒[∠A=120o∠B=120o∠C=120o⇒∠A=120o, vì ∠A>∠B>∠C
0=sin5A+sin5B+sin5C=2sin5(A+B)2cos5(A−B)2+2sin5C2cos5C2
=2cos5C2(cos5(A−B)2+cos5C2)
⇒cos5A2cos5B2cos5C2=0
⇒[∠A=36o∠B=36o∠C=36o⇒∠B=36o, vì ∠A>∠B>∠C
Từ đó suy ra ∠A=120o,∠B=36o,∠C=24o