1. Ta có:
$(1-y)(1-x^{2})\geq 0\Rightarrow 1-y-x^{2}+2x^{3}\geq 2x^{3}-x^{2}y$
Tương tự $1-z-y^{2}+2y^{3}\geq 2y^{3}-y^{2}z,1-x-z^{2}+2z^{3}\geq 2z^{3}-z^{2}x$
$\Rightarrow 2(x^{3}+y^{3}+z^{3})-(x^{2}y+y^{2}z+z^{2}x)\leq 3-x-y-z-x^{2}-y^{2}-z^{2}+2(x^{3}+y^{3}+z^{3})\leq 3$
do $x^{3}\leq x^{2},x^{3}\leq x,y^{3}\leq y^{2},y^{3}\leq y,z^{3}\leq z^{2},z^{3}\leq z$