tanB2.tanC2=13⇔3sinB2.sinC2=cosB2.cosC2
⇔sinB2.sinC2=cosB2.cosC2−2sinB2.sinC2
⇔cosB2.cosC2+sinB2.sinC2=2cosB2.cosC2−2sinB2.sinC2
⇔cos(B2−C2)=2cos(B2+C2)
Thế vào PT có
x2+x+cos(B+C)−14cos(B−C)=0
⇔x2+x+2cos2(B+C2)−1−14[2cos2(B−C2)−1]=0
⇔x2+x+2cos2(B+C2)−1−12.[4cos2(B+C2)]+14=0
⇔x2+x−1+14=0
⇔x2+x−34=0
⇔x=12;−32