Ta có:
sin2A+sin2B+sin2C
=2−12(cos2A+cos2B)−cos2C
=2−cos(A+B)cos(A−B)−cos2C
=2+cosC[cos(A−B)−cosC]
≤2+cosC(1−cosC)
≤2+[cosC+(1−cosC)2]2=94
Từ đó suy ra: cos2A+cos2B+cos2C≥34
Áp dụng BĐT Cauchy ta có:
cos3A+cos3A+18≥32cos2A
cos3B+cos3B+18≥32cos2B
cos3B+cos3B+18≥32cos2C
Suy ra: cos3A+cos3B+cos3C≥38
⇒A≤9α4−3β8
Vậy: max