Câu a)
$PT \Leftrightarrow 12\left(\sin x-\cos x\right)-12-\sin2x=0$ $\Leftrightarrow 12(\sin x-\cos x) +1-\sin2x -13=0$
$\Leftrightarrow \left(\sin^2x+\cos^2x-sin2x\right)+12\left(\sin x-\cos x\right)-13=0$
$\Leftrightarrow \left(\sin x-\cos x\right)^2+12\left(\sin x-\cos x\right)-13=0$
$\Leftrightarrow \left[\begin{array}{1} \sin x-\cos x=-13\,\,\mbox{(loại)}\\\sin x-\cos x=1 \end{array}\right.$
$\Rightarrow \left[\begin{array}{1}x=\dfrac{\pi}{2}+k2\pi \\ x=\pi+k2\pi \end{array}\right.$