2. 1sin100 −4sin700
= 1sin100 −4sin(600+100)
= 1sin100 −4(sin600cos100+cos600sin100)
= 1sin100 −4(√32cos100+12sin100)
= 1sin100 −2√3cos100−2sin100
= 1−2√3sin100cos100−2sin2100sin100
= cos200−√3sin200sin100
= cos200−sin600cos600sin200sin100
= cos200cos600−sin600sin200sin100
= cos(600+200)12sin100
= cos80012sin100
= sin10012sin100
= 2.