Ta cÓ:
a2+b2=c2+4R2
⇔4R2sin2A+4R2sin2B=4R2sin2C+4R2
⇔sin2A+sin2B=sin2C+1
⇔2sin2A−1+2sin2B−1=2sin2C
⇔−cos2A−cos2B=2sin2C
⇔−cos(A−B)cos(A+B)=sin2C
⇒tan2C=−cos(A−B)cos(A+B)cos2C
=−cos(A−B)cos(A+B)
=sinAsinB+cosAcosBsinAsinB−cosAcosB
=tanAtanB+1tanAtanB−1